WWW.LI.I-DOCX.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Различные ресурсы
 

Pages:     | 1 |   ...   | 4 | 5 ||

«Александр Марков РОЖДЕНИЕ СЛОЖНОСТИ Эволюционная биология сегодня: неожиданные открытия и новые вопросы Предисловие Бесконечный лабиринт Эта книга рассказывает о неожиданных и удивительных ...»

-- [ Страница 6 ] --

«Прирученные» вирусы — источник эволюционных новшеств. Хотя вероятность того, что встроившийся вирусный геном принесет хозяину пользу, невелика, целый ряд таких случаев уже известен. Например, гены вируса, встроившегося в геном предка узконосых обезьян свыше 40 млн лет назад, нашли себе несколько применений. Они работают у обезьян и человека в плаценте и выполняют там, по всей видимости, сразу три полезные функции. Первая из них — управление слиянием клеток в ходе формирования наружного слоя плаценты. Этот наружный слой состоит из слившихся клеток, и для его образования необходим какой-то способ нарушать целостность клеточных мембран, то есть протыкать их. Вирусные белки хорошо умеют это делать. Вторая функция — защита эмбриона от иммунной системы матери. Вирусные белки — отличные «специалисты» по подавлению активности иммунной системы. Наконец, третья функция состоит в защите эмбриона от «диких» вирусов. Белки «прирученного» вируса прикрепляются к тем поверхностным белкам человеческих клеток, за которые обычно «цепляются» дикие вирусы, чтобы проникнуть в клетку. В результате диким вирусам становится не за что «ухватиться», и они не могут заразить эмбрион.

Другой яркий пример «одомашнивания» вируса описан у наездников — паразитических насекомых, личинки которых развиваются в теле других насекомых, например гусениц. Около 100 млн лет назад предки наездников заразились вирусом и «приручили» его. Геном вируса встроился в геном наездника, и вирусные гены стали помогать насекомому-паразиту бороться с иммунной защитой своих жертв. Самки многих наездников впрыскивают в тело жертвы кроме своих яиц еще и особые «вирусоподобные частицы», внутри которых находятся гены белков, подавляющих иммунитет гусениц. Это позволяет личинкам наездника беспрепятственно развиваться в теле жертвы. Как выяснилось, «вирусоподобные частицы» образуются благодаря деятельности генов прирученного вируса, который давно уже стал неотъемлемой частью генома наездника.

—————

Чуть ли не половина генома человека состоит из мобильных генетических элементов (МГЭ) — транспозонов и ретротранспозонов. У других животных и растений дело обстоит примерно так же. У прокариот мобильных элементов меньше, но тоже очень много. Типичный мобильный элемент представляет собой по сути дела упрощенный вариант вируса. МГЭ обладают всеми характерными свойствами вирусов, кроме одного — инфекционности. Вирусы, как известно, могут свободно переходить из одной хозяйской клетки в другую и передаваться горизонтально, то есть заражать другие организмы. МГЭ более ограничены в своих передвижениях. Они могут активно размножаться и перемещаться в пределах генома — перепрыгивать с места на место, встраиваясь в хозяйские хромосомы в разных местах и влияя на работу близлежащих генов. Они, разумеется, передаются вертикально (от родителей к потомкам, то есть наследуются), а иногда и горизонтально — подобно полноценным вирусам.

Мобильные генетические элементы впервые были обнаружены Барбарой МакКлинток в 1951 году у кукурузы. Однако МГЭ слишком долго считались «генетической экзотикой», их распространенность и эволюционная роль недооценивались, и в результате свою заслуженную Нобелевскую премию за это открытие МакКлинток получила лишь в 1983 году, когда ей самой было уже за 80.

Поначалу эти подвижные вирусоподобные участки генома интерпретировали как «геномных паразитов», «эгоистическую» или «мусорную» ДНК. В последнее время все яснее становится огромная эволюционная роль этих элементов. Они придают геному свойство, которое в зависимости от субъективного восприятия называют либо «нестабильностью», либо «пластичностью». В первом случае подчеркивается потенциальный вред геномных перестроек, индуцируемых МГЭ, во втором — их потенциальная польза, создание материала для отбора, повышение полиморфизма и приспособляемости.

МГЭ придают геному нестабильность не только своими беспорядочными прыжками. Если какому-нибудь транспозону удастся как следует размножиться, это значит, что в геноме появится множество одинаковых фрагментов генетического «текста». А это резко повышает вероятность ошибок в ходе копирования ДНК и рекомбинации. Действительно, сложно не ошибиться при переписывании или редактировании текста, изобилующего повторами.

Но геномные перестройки, индуцируемые МГЭ, не являются хаотичными. Например, многие транспозоны способны встраиваться не в любое место генома, а только туда, где есть определенные «предпочтительные» для данного МГЭ последовательности нуклеотидов. Это делает их передвижения в известной мере предсказуемыми, закономерными. Распределение повторов по геному повышает вероятность не любых, а строго определенных перестроек. Например, участок генома, заключенный между двумя одинаковыми последовательностями (например, между двумя копиями транспозона), с большой вероятностью может быть «потерян» при репликации. Если такая потеря окажется выгодной, она будет поддержана отбором и закрепится в череде поколений, если нет, отбор будет ее отбраковывать, но тем не менее этот участок все равно будет выпадать из генома снова и снова (такое явление наблюдается, например, у возбудителя чумы Yersinia pestis ).

Как у бактерий, так и у высших организмов МГЭ могут служить своеобразными «рецепторами стресса», резко активизируя свои прыжки в критических для организма ситуациях и приводя к вспышкам мутагенеза. Это может способствовать приспособляемости видов. Когда условия жизни резко ухудшаются, то это по сути дела означает, что имеющийся у организма геном перестает соответствовать требованиям среды. В этой ситуации рост изменчивости может оказаться единственным возможным выходом (см. главу «Управляемые мутации»). Все это придает эволюционным изменениям, происходящим при участии МГЭ, не совсем случайный характер.

—————

Вирусы и мобильные элементы: кто от кого произошел? Родство вирусов и МГЭ не вызывает сомнений, однако не совсем ясно, кто из них появился раньше и кто от кого произошел. Не исключено, что началось все с мобильных элементов, которые могли просто самозародиться в геномах примитивных организмов, и произойти это могло еще на заре жизни. Постепенно усложняясь, МГЭ в дальнейшем превратились в настоящих вирусов. По крайней мере некоторые типы вирусов, скорее всего, возникли именно таким путем. Это прежде всего ретровирусы, к числу которых относится вирус ВИЧ. Ретровирусы отличаются от остальных вирусов тем, что встраивание в хозяйский геном является обязательной частью их жизненного цикла.

Наследственный материал ретровируса хранится в форме РНК. Когда ретровирус попадает в клетку, ее рибосомы начинают синтезировать вирусные белки по «инструкциям», записанным в вирусной РНК. Одним из этих белков является фермент обратная транскриптаза (РНК-зависимая ДНК-полимераза), функция которой состоит в переписывании информации из РНК в ДНК. Этот процесс называется обратной транскрипцией; отсюда и «ретро» в названии вируса. Обратная транскриптаза осуществляет «переписывание» вирусного генома в хозяйские хромосомы.

Ближайшими родственниками ретровирусов являются ретро-транспозоны — мобильные генетические элементы, широко распространенные в геномах эукариот. Ретровирусы, встроившиеся в геном хозяина, и ретротранспозоны очень похожи друг на друга. Те и другие представляют собой фрагменты ДНК, содержащие более или менее стандартный комплект генов, необходимых для собственного копирования и встраивания в хозяйскую ДНК. Гены эти в большинстве своем сходны у ретровирусов и ретротранспозонов. Обе разновидности «ретроэлементов» размножаются при помощи обратной транскрипции, то есть переписывания информации с РНК на ДНК.

Большинство специалистов склоняется к тому, что исторически первыми появились ретротранспозоны, а не ретровирусы. Они проще устроены, и самые простые из них вполне могли «самозародиться» в геномах примитивных организмов в результате случайных мутаций. По-видимому, это произошло еще на уровне прокариот. Ретровирусы, скорее всего, являются результатом некоторого усложнения или, если угодно, «совершенствования» ретротранспозонов. В дальнейшем, конечно, имели место и обратные процессы — ведь ретровирус легко может снова превратиться в ретротранспозон, если потеряет инфекционность в результате какой-нибудь мутации.

—————

По-видимому, многие крупные прогрессивные преобразования в эволюции высших организмов были связаны с активностью МГЭ.

От «прирученного» ретротранспозона ведет свою родословную фермент теломераза, отвечающий за восстановление кончиков хромомосом, которые имеют обыкновение укорачиваться после каждой репликации. Теломераза играет важную роль в процессах старения и в образовании раковых опухолей. Старение связано с низкой активностью теломеразы, рак — со слишком высокой. Для восстановления кончиков хромосом теломераза использует РНК-матрицу и механизм обратной транскрипции. А это не что иное, как главное «ноу-хау» ретротранспозонов и ретровирусов. Теломеразная регуляция — важнейший механизм поддержания целостности сложного многоклеточного организма, в котором ни одна клетка не имеет права делиться, когда ей вздумается.

У мобильных элементов древние позвоночные позаимствовали также и фермент транспозазу, который умеет вырезать и перемещать участки ДНК. Потомки этой транспозазы — белки RAG. Эти белки собирают из кусочков гены антител, по-разному комбинируя фрагменты ДНК в зреющих лимфоцитах. Так достигается огромное разнообразие этих защитных белков при небольшом количестве имеющихся в геноме фрагментов-заготовок (см. главу «Управляемые мутации»). Великолепная иммунная система позвоночных была одной из главных предпосылок их эволюционного успеха. И она, как мы теперь понимаем, является щедрым даром ближайших родственников вирусов.

—————

Древние млекопитающие позаимствовали у ретротранспозона ген, необходимый для развития плаценты. Недавно обнаруженный ген Reg10 мог сыграть важную роль в появлении плацентарных млекопитающих. Об этом свидетельствуют результаты исследований сотрудников Токийского медицинского университета. Ученые показали, что у мышиных эмбрионов с выключенным геном Reg10 нарушается развитие плаценты, отчего эмбрион погибает через 10 дней после зачатия. Внешне плацента такого эмбриона выглядит почти нормально, однако в ней отсутствуют некоторые типы клеток, необходимые для эффективной работы органа.

Обычный мышонок (слева) и мышонок с выключенным геном Reg10, которого удалось спасти от верной смерти при помощи пересадки тканей здорового эмбриона.

При помощи чрезвычайно сложных манипуляций, связанных с приживлением к дефектному зародышу эмбриональных клеток с нормально работающим геном Reg10, исследователям удалось спасти нескольких обреченных и вырастить из них взрослых мышей, способных к размножению. Правда, они заметно отставали в развитии. При этом ген Reg10 у них по-прежнему не работал. Тем самым было показано, что ген необходим в первую очередь именно для развития плаценты, хотя может выполнять и ряд других, менее важных функций.

Обнаружение гена, необходимого для развития плаценты, само по себе очень интересно. Появление плаценты позволило продлить внутриутробное развитие, что, в свою очередь, имело далеко идущие эволюционные последствия. Согласно одной из гипотез, именно плацентарность создала предпосылки для увеличения размеров мозга и быстрого «поумнения» млекопитающих, которое началось около 60 млн лет назад и затронуло только плацентарных. Сумчатые и однопроходные (к которым относятся утконос и ехидна), не имеющие плаценты, так и остались тугодумами.

Однако нет никаких оснований говорить, что ген Reg10 «кодирует плаценту». Плацента, хоть и бракованная, развивается и без его помощи. Появление нового эмбрионального органа потребовало согласованных изменений множества разных генов. Reg10 — только один из них.

Интересно другое. Ген Reg10 по своей структуре оказался чрезвычайно сходен с мобильным генетическим элементом — ретротранспозоном Sushi-ichi. По-видимому, предки плацентарных млекопитающих подхватили где-то ретротранспозон, который со временем был «приручен», утратил подвижность, а затем один из его генов был рекрутирован для выполнения новой функции — регуляции развития плаценты.

(Источник: Ono et al. Deletion of Reg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality // Nature Genetics. 2006. V. 38. P. 101–106.)

—————

Простейший транспозон устроен еще проще, чем простейший ретротранспозон. Это короткий участок ДНК, на концах которого расположены так называемые обращенные повторы, а в середине имеется ген, кодирующий транспозазу — фермент, необходимый для «размножения» и перемещения мобильного элемента.

Обращенные повторы — это последовательности нуклеотидов, комплементарные самим себе (мы помним, что нуклеотид А комплементарен нуклеотиду Т, нуклеотид Г — нуклеотиду Ц). Последовательности, комплементарные сами себе, называют также палиндромами, потому что они «читаются» при транскрипции одинаково в обе стороны. Вот пример генетического палиндрома: AAGCCCAA………TTGGGCTT. Если вместо многоточия «вписать» ген транспозазы, получим модель простейшего транспозона.

В отличие от ретротранспозонов обычные транспозоны не используют для самокопирования механизм обратной транскрипции, поэтому им не нужна обратная транскриптаза.

Чтобы транспозон совершил «прыжок», хозяйская клетка должна для начала прочитать ген транспозазы и синтезировать на его основе белок, то есть саму транспозазу. После этого транспозаза должна найти в хозяйской хромосоме свой транспозон, опознать его по концевым повторам, затем вырезать и вставить в какое-нибудь другое место генома.

Итак, транспозаза умеет делать две вещи: 1. узнавать определенные последовательности ДНК и прикрепляться к ним; 2. вырезать и перемещать фрагменты ДНК.

Оба «навыка» транспозазы могут быть использованы клеткой, когда ей удается приручить какой-нибудь транспозон, то есть сделать его неотъемлемой функциональной частью своего генома. Для подобных процессов даже придумали специальный термин — «молекулярное одомашнивание» (molecular domestication). Транспозон теряет подвижность просто за счет какой-нибудь мутационной «поломки» и начинает выполнять полезную для организма функцию. Мы уже упоминали о том, что способность прирученных транспозаз — RAG-белков — вырезать и перемещать фрагменты ДНК лежит в основе системы приобретенного иммунитета.

Еще больше эволюционных возможностей содержит в себе способность транспозаз распознавать определенные последовательности нуклеотидов ДНК. На специфическом распознавании белками нуклеотидных последовательностей основаны многие важнейшие процессы в живой клетке. Одним из таких процессов является регуляция активности генов при помощи специализированных регуляторных белков — транскрипционных факторов (ТФ). Транскрипционные факторы распознают определенные нуклеотидные последовательности, расположенные в регуляторной области тех или иных генов, присоединяются к ним и тем самым регулируют работу этих генов.

Чрезвычайно любопытно, что концевые обращенные повторы многих мобильных элементов, то есть участки ДНК, распознаваемые транспозазами, порой бывают удивительно похожи по последовательности нуклеотидов на сайты связывания ТФ (участки ДНК, распознаваемые транскрипционными факторами). Между прочим, в сайтах связывания ТФ часто встречаются палиндромные мотивы — последовательности ДНК, читающиеся одинаково в обе стороны.

Это позволяет предположить, что в ходе эволюции прирученные транспозазы могут иногда брать на себя роль транскрипционных факторов, а фрагменты концевых повторов транспозонов, наверное, могут иногда оказываться в таких позициях, где они способны функционировать в качестве сайтов связывания ТФ.

—————

Растения заимствуют гены-регуляторы у «геномных паразитов». В 2007 году был обнаружен первый реальный случай «превращения» прирученной транспозазы в транскрипционный фактор. Открытие было сделано в ходе изучения светочувствительных белков у арабидопсиса — растения из семейства крестоцветных. Как и другие цветковые растения, арабидопсис внимательно следит за освещенностью при помощи сложных молекулярных систем. Это помогает растению оптимизировать свой рост, обмен веществ, выращивать листья и соцветия в «правильное» время.

Важную роль в фоторецепции у цветковых играет белок фитохром А, реагирующий на свет с длиной волны 700–750 нм («дальний красный»). Под действием света фитохром А переходит в биологически активную форму и транспортируется из цитоплазмы в ядро клетки, где он «включает» целый ряд генов, регулирующих цветение и созревание семян. Предполагается, что фитохром А был уже у последнего общего предка цветковых растений и что формирование эффективной светочувствительной регуляторной системы способствовало быстрой экспансии цветковых в меловом периоде.

Светозависимый транспорт фитохрома А в ядро осуществляется при помощи белков FHY1 и FHL. Кроме того, были идентифицированы еще два белка — FHY3 и FAR1, без которых транспорт фитохрома А в ядро нарушается, однако конкретная функция этих белков была до сих пор неизвестна. Именно эти два белка и привлекли внимание исследователей.

Анализ нуклеотидных последовательностей генов FHY3 и FAR1 показал чрезвычайно высокое сходство с генами транспозаз, входящими в состав транспозонов Mutator и Jittery. Оба эти транспозона широко распространены в геномах цветковых растений. Сходство генов FHY3 и FAR1 странспозазами оказалось настолько большим, что говорить о случайности не приходится — это, несомненно, гены «прирученных» транспозаз.

Оказалось, что белки FHY3 и FAR1 необходимы для активации генов FHY1 и FHL. «Прирученные транспозазы» регулируют активность обоих генов не поодиночке, а совместными усилиями. Они проникают в ядро и прикрепляются непосредственно к регуляторной области (промотору) генов FHY1 и FHL, что приводит к резкому росту активности этих генов. Таким образом, «прирученные транспозазы» FHY3 и FAR1 работают как самые настоящие транскрипционные факторы.

Кроме того, исследователи установили, что активность самих генов «прирученных транспозаз» подавляется фитохромом А, поступающим в ядро. В результате образуется контур отрицательной обратной связи, благодаря которому сигнальная система срабатывает при определенной освещенности и затем отключается, а не работает постоянно, как пожарная сирена, пока освещенность не изменится.

Но главное значение этой работы, конечно, в том, что впервые удалось продемонстрировать превращение «прирученных транспозаз» в полноценные транскрипционные факторы. Авторы предполагают, что приручение одного или нескольких транспозонов произошло вскоре после появления цветковых растений (примерно в середине мелового периода, около 100 млн лет назад) и было связано с освоением первыми цветковыми разных широтных зон, то есть местообитаний с разной сезонной динамикой освещенности.

(Источник: Rongcheng Lin, Lei Ding, Claudio Casola, Daniel R. Ripoll, Cédric Feschotte, Haiyang Wang. Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis // Science. 2007. V. 318. P. 1302–1305.)

—————

Данные, указывающие на важную эволюционную роль МГЭ, стали стремительно накапливаться в последние несколько лет. Стало ясно, что многие важные генетические инновации — прежде всего новые регуляторные участки ДНК, управляющие работой соседних генов, — сформировались из фрагментов «прирученных» МГЭ. Но до самого последнего времени не удавалось получить сколько-нибудь точных количественных оценок вклада МГЭ в эволюцию. Поэтому ученые не могли сказать определенно, как все-таки следует относиться к обнаруженным фактам приручения МГЭ — как к типичному и массовому явлению, магистральному направлению эволюции, или все-таки как к экзотике.

Короткохвостый опоссум Monodelphis domestica. Этот маленький южноамериканский зверек стал первым сумчатым млекопитающим, чей геном удалось прочесть. Вторым, скорее всего, будет кенгуру.

Для получения количественных оценок необходим комплексный сравнительный анализ целых геномов. Как известно, в последние годы мировое научное сообщество прилагает огромные усилия для того, чтобы определить нуклеотидные последовательности геномов как можно большего числа живых организмов — от бактерий до млекопитающих. И эти усилия начинают приносить плоды. Первые количественные подтверждения того, что формирование новых регуляторных участков ДНК из фрагментов МГЭ является правилом, а не исключением, были получены в результате прочтения генома маленького южноамериканского сумчатого зверька — серого короткохвостого опоссума.

Геном опоссума был прочтен в мае 2007 года. Этот зверек был выбран для геномных исследований не случайно — он является важным лабораторным объектом, на котором изучают, в частности, регенерацию и формирование злокачественных опухолей. Кроме того, предполагали, что сравнение с геномом сумчатого животного поможет лучше понять прочтенные ранее геномы плацентарных — человека, шимпанзе, макака-резуса, собаки, мыши, крысы. Эти надежды полностью оправдались.

Различия в наборе белок-кодирующих генов между опоссумом и человеком оказались очень невелики. Подавляющее большинство генов опоссума имеют бесспорные человеческие аналоги и наоборот.

В целом в белок-кодирующих областях геномов сумчатых и плацентарных за 180 миллионов лет, прошедших после разделения этих линий, возникло сравнительно мало эволюционных инноваций. По современным представлениям, ведущую роль в эволюции высших организмов должны были играть изменения регуляторных участков генома, которые сами не кодируют белков, но влияют на работу белок-кодирующих генов. Геном опоссума блестяще подтвердил эту теорию.

Сравнительный анализ геномов опоссума, плацентарных и курицы показал, что в эволюции плацентарных подавляющее большинство эволюционных инноваций было связано с появлением новых участков ДНК, которые не кодируют белков, но выполняют важные регуляторные функции. Из всех функционально важных кодирующих участков генома плацентарных лишь около одного процента появились после отделения плацентарных от общего предка с сумчатыми. Что же касается функционально важных некодирующих (то есть регуляторных) последовательностей, то из их числа целых 20% оказались уникальными для плацентарных. Иными словами, скорость появления новых регуляторных участков генома в эволюции плацентарных была в 20 раз выше, чем скорость появления новых кодирующих участков.

У читателя может возникнуть резонный вопрос, почему мы говорим об эволюции плацентарных в связи с прочтением генома опоссума — зверька, относящегося не к плацентарным, а к сумчатым. Дело в том, что только сравнение с геномом опоссума позволило ученым установить, какие из некодирующих последовательностей геномов плацентарных являются новыми, то есть появившимися после разделения эволюционных линий сумчатых и плацентарных. Для того чтобы понять эволюционную роль изменений в некодирующих последовательностях, нужно еще знать, какие из этих последовательностей являются функционально важными, а какие нет. Для плацентарных это можно сделать, сравнивая между собой геномы разных видов: если некодирующий участок сходен, например, у человека и собаки, значит, он, скорее всего, является важным (отбор отбраковывал слишком сильные изменения в этом участке). Для сумчатых этого сделать пока нельзя, поскольку прочтен геном только одного вида сумчатых. Именно поэтому геном опоссума позволил гораздо больше узнать об эволюции плацентарных, чем сумчатых.

Как и следовало ожидать, особенно много новых регуляторных последовательностей у плацентарных появилось в окрестностях генов, кодирующих ключевые регуляторы индивидуального развития, в том числе Hox -генов (см. главу 5). Сами эти гены отличаются повышенной консервативностью — они очень похожи у плацентарных, опоссума и даже курицы. Получается, что изменения в строении организма у плацентарных млекопитающих были обусловлены в основном добавлением новых регуляторов к генам — регуляторам онтогенеза.

Самый яркий результат исследователи получили в ходе изучения происхождения новых регуляторных последовательностей, возникших в ходе эволюции плацентарных. В принципе, эти последовательности могут появляться тремя способами: 1. в результате изменения «до неузнаваемости» каких-то старых, предковых регуляторных последовательностей; 2. в результате дупликации старых регуляторных последовательностей и последующего накопления различий между копиями; 3. заново, из последовательностей, которые у предков были нефункциональными, в том числе из «прирученных» мобильных элементов.

Ранее было выявлено несколько случаев, когда в эволюции позвоночных новые регуляторные последовательности формировались из мобильных генетических элементов. Как мы уже знаем, сама структура МГЭ делает их превосходными «заготовками» для создания новых регуляторных элементов в хозяйском геноме. МГЭ обычно имеют свои собственные регуляторные элементы, например, места прикрепления транспозаз — ферментов, осуществляющих перемещения МГЭ. Эти регуляторные элементы легко могут быть адаптированы для регуляции работы генов хозяйского генома. Однако до сих пор оставалось неясным, являются ли выявленные случаи удачного приручения транспозонов редкими исключениями или общим правилом. Теперь наконец можно с уверенностью сказать: это правило.

Оказалось, что в человеческом геноме как минимум 16% из числа важных регуляторных последовательностей, уникальных для плацентарных, представляют собой участки мобильных элементов. При создании новых регуляторных последовательностей у плацентарных в ход пошли все основные группы транспозонов и ретротранспозонов. Причем вышеупомянутые 16% — это, несомненно, сильно заниженная оценка. Дело в том, что «прирученный», утративший подвижность транспозон в результате накопления мутаций становится неузнаваемым примерно за 100–200 миллионов лет. Сохранится в целости лишь тот его фрагмент, который оказался полезен хозяйскому геному, но этого, скорее всего, будет недостаточно, чтобы распознать в таком фрагменте бывший транспозон. За время, прошедшее с момента обособления плацентарных, эта судьба должна была постигнуть значительную часть прирученных транспозонов.

Таким образом, «одомашнивание» мобильных генетических элементов играет крайне важную роль в эволюции млекопитающих. Скорее всего, это справедливо и для других живых организмов, но чтобы это доказать, необходимы дальнейшие исследования.

Но вернемся к наследованию приобретенных признаков. Связь МГЭ и вирусов с «ламарковскими» механизмами наследования может оказаться еще более тесной, чем принято считать. Можно предположить — пока лишь теоретически, — что при помощи МГЭ высшие организмы могут иногда передавать своему потомству вполне исчерпывающую и адекватную информацию о полезных адаптациях, выработанных ими в течение жизни. По сути дела, это и есть «ламарковское» наследование в чистом виде и без всяких оговорок, в том самом смысле, какой вкладывал в это понятие сам Ламарк.

Эта смелая гипотеза была предложена и подробно обоснована австралийским иммунологом Э. Стилом и его коллегами. Мы помним из главы «Управляемые мутации», как лимфоциты млекопитающих производят гены новых защитных белков-антител в ходе выработки приобретенного иммунитета. Для этого исходные генетические заготовки сначала комбинируются разными способами, а затем подвергаются интенсивному мутированию и отбору. Таким образом формируется новый ген, обеспечивающий защиту против какой-нибудь инфекции — например, против новой болезнетворной бактерии. Выработка приобретенного иммунитета требует времени, и не всегда организм успевает справиться с этой задачей. Против некоторых самых опасных возбудителей было бы выгодно иметь врожденный иммунитет, а не приобретать его каждый раз заново при столкновении с инфекцией. Собственно говоря, именно этот «недостаток» нашей иммунной системы и пытается восполнить современная медицина, осуществляя вакцинацию людей и домашних животных. Если бы генетические изменения, возникающие в лимфоцитах при выработке приобретенного иммунитета, могли иногда передаваться потомству, это было бы аналогично естественной, природной вакцинации последующих поколений.

Но как такое может произойти? Ведь для этого новый вариант защитного гена, сформировавшийся в лимфоцитах, должен быть перенесен в половые клетки и встроен в их геном. Кто или что может служить переносчиком генов из лимфоцитов в половые клетки? По мнению Стила, на роль таких переносчиков идеально подходит одна из разновидностей МГЭ, которой буквально кишат геномы млекопитающих, — так называемые эндогенные ретровирусы. Это геномы ретровирусов, которым когда-то удалось встроиться в геном половых клеток, или «продвинутые» ретротранспозоны, способные к образованию вирусоподобных частиц. Грань между сложными ретротранспозонами и простыми ретровирусами весьма условна. Эндогенные ретровирусы, разумеется, передаются по наследству точно так же, как любые другие участки генома. При этом они сохраняют способность «оживать», то есть упаковывать свой геном в белковую оболочку (капсид) и переходить из клетки в клетку. Вместе со своими собственными генами обратной транскриптазы, интегразы, капсидного белка эндогенные ретровирусы могут прихватывать с собой и «чужие» молекулы РНК, считанные с каких-нибудь других генов. Например, с гена нового антитела, если дело происходит в лимфоците.

Покинув лимфоцит, такой эндогенный ретровирус в принципе может с током крови добраться до половых клеток и проникнуть в них. Здесь в соответствии с «инструкциями», записанными в вирусной РНК, будут синтезированы ферменты обратная транскриптаза и интеграза. Первая произведет ДНКовые копии вирусных генов, а заодно и гена нового антитела; вторая встроит эти фрагменты ДНК в геном половой клетки. Таким образом новый защитный ген будет передан потомству. При выполнении некоторых дополнительных условий это может привести к тому, что потомство будет с самого начала иметь повышенную устойчивость к какой-то инфекции.

Самое интересное, что если бы эта гипотеза оказалась верной и такой механизм наследования удалось бы продемонстрировать экспериментально, то тем самым была бы подтверждена «крамольная» и всеми позабытая дарвиновская теория пангенеза, о которой мы говорили в начале главы. Нетрудно заметить, что эндогенные ретровирусы, выступающие в роли переносчиков информации о приобретенных признаках в половые клетки, совершенно идентичны геммулам, или пангенам, о существовании которых говорил Дарвин.

Как от теоретических геммул перейти к реальным агентам приобретенного наследования? В этом нам помогут, например, ретропсевдогены, присутствующие в большом количестве в геномах эукариот. Ретропсевдоген — это последовательность нуклеотидов, идентичная кодирующей части какого-нибудь гена, обычно неактивная, неработающая, которая возникла в результате деятельности обратной транскриптазы. Ее нетрудно отличить от «настоящего» гена по отсутствию интронов — некодирующих вставок, которые есть в большинстве генов высших организмов.

Ретропсевдоген образуется так. Сначала с обычного гена «считывается» матричная РНК (мРНК). Считывается все подряд — и кодирующие участки (экзоны), и вставленные между ними интроны. Затем интроны удаляются, а кодирующие участки сшиваются друг с другом (этот процесс посттранскрипционной обработки РНК называется сплайсингом). В результате образуется «зрелая мРНК». На ее основе синтезируется белок.

Если же зрелая мРНК с удаленными интронами «попадется под руку» обратной транскриптазе, то она может синтезировать ДНКовую копию этой РНК и встроить ее в какую-нибудь хромосому. Так и возникают ретропсевдогены. Они обычно не работают, но не потому, что лишены интронов, а потому, что рядом с ними не оказывается подходящих регуляторных участков ДНК — промоторов. Если около гена нет промотора, ферменту РНК-полимеразе просто не к чему прикрепиться, и ген не может быть прочитан. Впрочем, иногда ретропсевдогену может «повезти», и он случайно окажется рядом с промотором в результате какой-нибудь геномной перестройки. Известен ряд случаев, когда ретропсевдогены становились работающими генами.

Существование ретропсевдогенов доказывает, что обратная транскриптаза действительно может «переписывать» в геном половых клеток информацию, содержащуюся в молекулах РНК, считанных с различных генов. Это означает, что у животных есть все составные части предполагаемого механизма «пангенеза». Теоретически дарвиновские геммулы имеют право на существование. Они вполне могли бы работать и обеспечивать наследование приобретенных признаков «по Ламарку». Загвоздка лишь в том, что они, по-видимому, в действительности делают это крайне редко. Почему? Скорее всего, просто потому, что это бесперспективно. От всех инфекционных агентов, которые существуют сейчас и могут появиться в будущем, все равно нельзя запастись готовыми, наследуемыми антителами. Любой организм сталкивается в течение жизни с тысячами и миллионами разных возбудителей, и если бы каждое новое антитело «переписывалось» в геном половых клеток, геном оказался бы неимоверно раздут, а это, как мы знаем, ведет к росту «непроизводительных расходов» для каждой клетки организма (см. раздел «Происхождение птиц» в главе 6). Развитие системы приобретенного иммунитета — способности вырабатывать любые антитела в течение жизни — было величайшим эволюционным достижением, а закрепление в геноме потомства каждого удачного антитела было бы тупиковым путем.

Эпигенетическое наследование

Недавно открыто еще несколько молекулярных механизмов, которые в принципе могут служить для передачи по наследству приобретенных признаков. Эти механизмы не связаны напрямую с изменениями самого «текста», записанного в структуре молекул ДНК, то есть с мутациями. Поэтому такую наследственность называют «эпигенетической», или «надгенетической».

Один из эпигенетических механизмов — метилирование ДНК. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках, в том числе и в половых, специальные ферменты «пришивают» метильные группы (-CH3). Причем к одним генам метильных групп пришивают больше, к другим — меньше. Распределение метильных групп по генам зависит от того, насколько активно тот или иной ген используется. Активные гены метилируются слабо, неактивные — сильно. Получается совсем как с упражнением и неупражнением органов, которое Ламарк считал причиной наследственных изменений. Поскольку «рисунок метилирования» может передаваться по наследству и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: «натренированные» предками гены будут и у потомства работать активнее, чем «ослабевшие» от долгого неиспользования.

Однако и в данном случае природа, судя по всему, не заинтересовалась возможностью наладить наследование «по Ламарку». Наибольшего развития система метилирования ДНК в половых клетках достигла у двух групп высших многоклеточных, венчающих эволюционное древо, соответственно, животных и растений — а именно у плацентарных млекопитающих и покрытосеменных (цветковых) растений. В обоих случаях избирательное метилирование ДНК в половых клетках, так называемый «геномный импринтинг», служит не для передачи по наследству приобретенных признаков, а для регуляции взаимоотношений между зародышем и материнским организмом.

—————

Геномный импринтинг — распространенное у млекопитающих и цветковых растений явление, состоящее в том, что некоторые гены в половых клетках родителей особым образом «метятся». К цитозиновым основаниям прикрепляется метильная группа. «Помеченный» ген у потомства просто-напросто не работает. Некоторые гены отключаются в сперматозоидах, другие в яйцеклетках. Если гены отключены в сперматозоидах, то соответствующие признаки потомство наследует только от матери. Если отключены гены в яйцеклетке, то наследуются отцовские признаки. В половых клетках потомства старые метки удаляются и заменяются новыми. В результате у внуков могут проявиться признаки деда или бабки, которые не были выражены у родителей. Импринтинг — это пример так называемой «эпигенетической» наследственности, то есть наследственных свойств, не связанных с изменением последовательности нуклеотидов в молекулах ДНК, генетического текста.

Именно благодаря импринтингу при скрещивании разных пород или видов млекопитающих оказывается небезразлично направление гибридизации, то есть кто из двух родителей будет принадлежать к какому виду. Например, при скрещивании осла с кобылой получаются мулы, а при скрещивании жеребца с ослицей — лошаки. Вопреки классическим законам генетики важным для потомства оказывается не только то, какие гены они получили, но и от кого — от отца или матери.

Зачем нужен геномный импринтинг, почему он появился? Для объяснения этого существует две гипотезы. Первая — общепринятая — состоит в том, что импринтинг развился вследствие различия интересов полов. У млекопитающих между самкой и ее детенышем во время внутриутробного развития складываются отчасти антагонистические отношения. Говоря упрощенно, эмбрион старается высосать из матери побольше соков, а мать старается сохранить силы и здоровье, чтобы в будущем иметь возможность родить и других детей. Самец в этом конфликте в общем случае — на стороне детеныша. Других-то детей самка еще неизвестно от кого родит, а этот — свой. Поэтому самцы отключают в своих сперматозоидах те гены, которые способствуют защите матери от чрезмерных притязаний эмбриона, а матери, напротив, отключают в своих яйцеклетках те гены, которые могут эти притязания усилить. Действительно, большинство генов млекопитающих, подвергающихся родительскому импринтингу, так или иначе связаны с внутриутробным развитием, строением плаценты и т. п.

Из-за этого у млекопитающих (в отличие от многих других животных, таких как насекомые или ящерицы) принципиально невозможно развитие зародыша на основе только материнских или только отцовских генов.

Можно взять только что оплодотворенную яйцеклетку какого- нибудь другого животного (не млекопитающего, а, например, лягушки), в которой ядра яйцеклетки и сперматозоида еще не успели слиться, удалить из нее отцовское ядро и заменить его ядром из другой яйцеклетки. Два «материнских» ядра сольются, и из такой яйцеклетки в благоприятных условиях может развиться нормальный организм, все гены которого — материнские. Можно искусственно сделать яйцеклетку с двумя отцовскими ядрами, и из нее тоже может вырасти жизнеспособное животное. Однако с млекопитающими этот номер не пройдет. Без отцовских генов у эмбриона не разовьется плацента, а без материнских плацента разовьется даже лучше, чем надо, но не будет нормально развиваться сам эмбрион.

Дополнительная гипотеза, более симпатичная с этической точки зрения, была высказана совсем недавно. Согласно этой гипотезе основной смысл геномного импринтинга — достижение лучшей совместимости между матерью и плодом, то есть на первое место ставятся не антагонистические взаимоотношения матери и эмбриона, а кооперативные. Если часть отцовских генов будет выключена, то у эмбриона будут работать только материнские копии этих генов, и эмбрион, таким образом, будет по своим физиологическим и биохимическим свойствам больше похож на мать, и им легче будет приспособиться друг к другу. Эта гипотеза предполагает, что в ходе родительского импринтинга должно отключаться больше отцовских генов, чем материнских, и факты это подтверждают.

—————

Метилирование и деметилирование генов играют важную роль в процессе индивидуального развития многоклеточного организма, где они служат для контроля работы генов в развивающихся органах и тканях. Кроме того, при помощи метилирования клетки борются с чрезмерной активностью мобильных генетических элементов. Избирательное метилирование МГЭ снижает частоту их «прыжков». Особенно тщательно многоклеточные организмы «следят» за активностью МГЭ при созревании сперматозоидов (см. главу «На подступах к неведомому»).

Очень важно, что метилирование дает клетке возможность попутно контролировать и частоту мутирования тех или иных генов. Как уже отмечалось в главе «Управляемые мутации», метилирование цитозина (Ц) резко повышает вероятность мутации, в результате которой цитозин заменяется тимином (Т). Метилирование ДНК активно контролируется клеткой, таким образом, в клетке реально существует механизм, позволяющий целенаправленно регулировать вероятность мутирования определенных участков генома.

—————

Взаимное включение и выключение генов. Еще один возможный вариант эпигенетического наследования приобретенных признаков основан на системах взаимной активации и инактивации генов. Допустим, ген А производит белок, одно из действий которого состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный «выключать» ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия, и случается такое редко. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот приобретенный признак передастся потомству, родившемуся после «переключения». Опять получается наследование по Ламарку. Точнее, возможность такого наследования. И опять, как и в предыдущих случаях, живые организмы, похоже, не очень-то торопятся воспользоваться этой замечательной возможностью.

—————

Мы видим, что «ламарковское» наследование приобретенных признаков вполне осуществимо технически. Имеется целый ряд молекулярных механизмов, способных обеспечить целенаправленную передачу потомству наследуемой информации о приобретенных признаках. Тот факт, что живые организмы редко используют эти возможности, говорит о том, что наследование «по Ламарку» им просто не выгодно.

—————

Негенетическая «память поколений». Передача информации от родителей к потомкам может осуществляться тремя основными путями, два из которых общеизвестны: это генетическая наследственность, свойственная всем без исключения живым организмам, и обучение, характерное только для животных со сложной нервной системой.

Третий путь менее известен и гораздо хуже изучен, однако и он, судя по всему, играет важную роль в жизни многих организмов. Это так называемые «родительские эффекты» — внегенетические изменения у потомства, обусловленные условиями жизни и заботой родителей. Простейший пример — самка, плохо питавшаяся в течение своей жизни, откладывает яйца с меньшим количеством питательных веществ, из которых развивается — даже при «хороших» генах — сравнительно чахлое потомство. Чем не наследование «приобретенного признака»?

Более сложные варианты могут включать различные эпигенетические изменения наследственного материала (ДНК), о которых мы говорили выше, в том числе геномный импринтинг, который представляет собой не что иное, как целенаправленное манипулирование наследственными свойствами потомства. Кроме того, известно, что эмбриональное развитие животных, особенно на начальных этапах, во многом зависит от разнообразных молекул (в том числе матричных РНК), поступающих в яйцеклетку из материнского организма (см. раздел «Нужны ли эмбрионам гены» в главе 5). Ясно, что условия жизни матери в принципе могут влиять на количество и состав этих веществ и, следовательно, на развитие зародыша.

Изучать родительские эффекты легче всего у тех животных, в жизненном цикле которых присутствует партеногенетическое размножение (развитие потомства из неоплодотворенныхяиц) — как, например, у рачков-дафний. В этом случае геномы матери и ее дочерей идентичны и легче отличить «материнские» эффекты от генетических.

Недавно российским ученым удалось показать методом моделирования, что материнский эффект — негенетическая передача от матери к потомству информации о длине светового дня и обилии пищи — играет важную роль в сезонных изменениях численности и поведения дафний и делает популяцию более устойчивой. Наличие материнского эффекта у дафний, вначале предсказанное теоретически, недавно получило экспериментальные подтверждения.

Еще в 1996 году А. А. Умнов и В. Р. Алексеев разработали имитационную модель для проверки гипотезы о существовании у ветвистоусых рачков материнского эффекта. В модели предполагалось, что дафнии передают потомству информацию о трофических условиях (то есть о том, насколько хорошо питалась мать). Позже эта гипотеза была подтверждена экспериментально. Выяснилось, что дафнии передают потомству информацию не только о своем питании, но и об изменениях длины светового дня. Вследствие этого особи, имеющие одинаковый размер и возраст, могут по-разному реагировать на одни и те же пищевые и температурные условия только потому, что их матери имели разную жизненную историю.

Ветвистоусый рачок Daphnia longispina — массовый представитель зоопланктона озер и луж умеренной зоны. На фотографии видны зреющие яйца в выводковой камере.

В новой статье В. Р. Алексеева и Т. И. Казанцевой, опубликованной в 2007 году в «Журнале общей биологии», оценивается возможное влияние материнского эффекта на колебания численности популяций дафний, на время перехода от партеногенетического (однополого) размножения к двуполому, на количество зимующих яиц и другие параметры популяции.

В качестве «образца» для моделирования использовалась хорошо изученная популяция рачков Daphnia longispina из озера Красненького в Псковской области. Жизненный цикл этих рачков довольно сложен. Весной из зимующих яиц выходит первое поколение самок, которые начинают быстро размножаться путем партеногенеза, производя на свет только самок. В начале лета численность микроскопических водорослей — основной пищи дафний — снижается, и дафнии начинают производить на свет самцов и переходят к двуполому размножению. Образуются покоящиеся оплодотворенные яйца, и наступает «летняя диапауза», длящаяся не более месяца. Затем из яиц выходит новое поколение самок, размножающихся партеногенетически. В конце лета и осенью в популяции снова появляются самцы, начинается двуполое размножение и откладываются зимующие яйца, покрытые плотной оболочкой, позволяющей переносить неблагоприятные условия.

Переход дафний от однополого размножения к двуполому регулируется несколькими факторами — температурой, обилием пищи, длиной светового дня. Информация о динамике этих факторов в прошлом и настоящем доходит до дафний двумя путями: из их личного жизненного опыта, а также от матери благодаря «материнскому эффекту».

Разработанная авторами модель имитирует жизненный путь каждой отдельной особи. Вероятность перехода особи от однополого размножения к двуполому зависит в модели как от сиюминутного состояния факторов среды (температуры, длины светового дня, количества пищи), так и от индивидуального «потенциала роста» особи, который, в свою очередь, определяется условиями жизни и «потенциалом» ее матери. Потенциал роста определяет максимально возможную скорость роста данной особи. Чем медленнее рост, тем выше вероятность перехода к двуполому размножению.

Таким образом, переход к двуполому размножению зависит не только оттого, как питалась данная особь и каковы условия среды в данный момент, но и оттого, как питались ее мать и более далекие предки. Тем самым задается «материнский эффект» — негенетическая передача информации от матери к потомкам. Авторам удалось показать, что при определенных входных параметрах их модель очень точно воспроизводит реальную динамику численности самцов и самок, партеногенетических и покоящихся яиц, наблюдаемую в реальной популяции. Надо сказать, что эта реальная динамика достаточно сложна: например, в течение одного лета наблюдается несколько (обычно 5) пиков численности дафний.

Точное соответствие модельной и реальной популяционной динамики дало основания полагать, что модель действительно учитывает все основные факторы и причинно-следственные связи, определяющие эту динамику. Теперь модель можно было использовать для проверки гипотез о роли материнского эффекта.

Изъятие из модели материнского эффекта привело к тому, что модельная динамика стала резко отличаться от реальной. Ни один из вариантов модели с отключенным материнским эффектом не позволил воспроизвести динамику численности и формирование банка покоящихся яиц, необходимых для устойчивого многолетнего развития популяции.

Например, если потенциал роста был задан высоким, покоящиеся яйца практически не образовывались, выживание популяции в зимний период было возможно только благодаря небольшому количеству перезимовавших самок и в долгосрочной перспективе популяция становилась крайне уязвимой. На этом основании авторы сделали вывод о существенной роли материнского эффекта в формировании популяционной динамики и сезонных адаптаций у дафний.

(Источник: В. Р. Алексеев, Т. И. Казанцева. Использование индивидуально-ориентированной модели для изучения роли материнского эффекта в смене типов размножения у Cladocera // Журнал общей биологии. 2007. Т. 68. С. 231–240.)

—————

Что почитать на эту тему в Интернете

Б. Ф. Ванюшин. Материализация эпигенетики, или Небольшие изменения с большими последствиями. 2004. http://evolbiol.ru/epigeneticai.pdfВ. А. Гвоздев. Регуляция активности генов, обусловленная химической модификацией (метилированием) ДНК. 1999. http://evolbiol.ru/gvozdev1999.pdfЛ. А. Животовский. Наследование приобретенных признаков: Ламарк был прав. 2003. http://evolbiol.ru/zh_lamark.pdfС. Г. Инге-Вечтомов. Цитогены и прионы: цитоплазматическая наследственность без ДНК? 1996. http://evolbiol.ru/inge1996.pdfЖ. Б. Ламарк. Философия зоологии (главы из книги). http://evolbiol.ru/lamark.htmА. В. Марков. Обзоры на сайте «Проблемы эволюции»:

Горизонтальный перенос генов и его роль в эволюции. http://evolbiol.ru/latgentrans.htmНа что похожа эволюция: на ветвящееся дерево или на сеть? http://evolbiol.ru/reticulum.htmНаследование приобретенных признаков (неоламаркистская страничка) http://evolbiol.ru/neolamarck.htmС. А. Назаренко. Эпигенетическая регуляция активности генов и ее эволюция. 2002. http://evolbiol.ru/nazarenko2002.htmВ. А. Ратнер, Л. А. Васильева. Мобильные генетические элементы (МГЭ) и эволюция геномов. 1993. http://evolbiol.ru/ratnen.htmЭ. Стил, Р. Линдли, Р. Бландэн. Что если Ламарк прав? Иммуногенетика и эволюция. 2002. http://evolbiol.ru/lamarck.htmС. В. Шестаков. Роль горизонтального переноса генов в эволюции. 2003. http://evolbiol.ru/shestakov.htmГлава 9. На подступах к неведомому

У некоторых читателей при чтении предыдущих глав могло сложиться обманчивое впечатление, что в биологии осталось не так уж много нерешенных проблем. Эта глава написана специально для тех, кто так подумал.

На самом деле в сегодняшней биологии нерешенных загадок и тайн, пожалуй, больше, чем когда-либо в прошлом. Это вовсе не значит, что биология удаляется от истины, а ученые все больше запутываются в неразрешимых противоречиях. Тенденция как раз противоположная: большинство возникающих вопросов успешно и довольно быстро разрешается, но каждый полученный ответ порождает новые вопросы. Хорошую аллегорию для этой ситуации придумали еще древние греки — первооткрыватели научного метода познания. Если представить себе область известного как некую замкнутую геометрическую фигуру, допустим, шар, а область неведомого — как все, что находится за пределами этой фигуры, то становится ясно, почему с ростом наших знаний появляется все больше новых вопросов. Чем больше объем шара, читай — количество знаний, тем больше площадь его соприкосновения с неведомым. Эта площадь символизирует количество вопросов, которые уже осознаны человечеством, но еще не получили ответа.

Впрочем, эта геометрическая аллегория исходит из допущения, что неведомое бесконечно. В природе это вряд ли так. В конце концов, земная жизнь (а на большее биологи пока не замахиваются) имеет вполне конечную размерность. Время существования, биомасса, численность, занимаемый объем, даже количество атомов, когда-либо побывавших в составе живых существ, — все эти величины далеко не бесконечны, а в масштабах Вселенной даже и не очень велики. И, разумеется, большинство характеристик живых объектов многократно повторяется: от клетки к клетке, от организма к организму, от сообщества к сообществу, поэтому вовсе не обязательно в деталях изучать каждый из этих объектов. «Область неведомого» в биологии не бесконечна, у нее есть границы, но только мы пока не знаем, где они проходят и когда мы до них наконец доберемся.

В этой главе мы поговорим о некоторых интригующих научных проблемах, находящихся в разных стадиях разрешения. В одних случаях это нечто совсем непонятное, только начинающее приоткрываться. В других, может быть, нам осталось сделать лишь одно последнее усилие, чтобы головоломка наконец сложилась. Таких «историй с ненаписанным концом» в современной биологии очень много, и нужно помнить, что описанные здесь случаи — лишь капля в море.

О сложном и непонятном трудно рассказать понятно и просто. Я уже упоминал в предисловии о том, что современная биология — сложная наука и поэтому для того, чтобы высказывать компетентные суждения по биологическим вопросам, требуются не меньшие профессиональная подготовка и уровень образования, чем, к примеру, в квантовой физике. Очень жаль, что наши доморощенные креационисты этого не понимают. Проблемы, о которых пойдет речь в этой главе, служат хорошей иллюстрацией к сказанному.

Парамутации

Как мы знаем из предыдущих глав, далеко не вся наследственная информация, передающаяся из поколения в поколение, записана в последовательности нуклеотидов в молекулах ДНК. Кроме этой генетической информации есть еще и так называемая эпигенетическая (см. главу «Наследуются ли приобретенные признаки?»). Например, определенные нуклеотиды в ДНК могут подвергаться химической модификации — метилированию. В ходе репликации молекул ДНК специальные ферменты не всегда, но часто метилируют в новой молекуле ДНК те же нуклеотиды, которые были метилированы в родительской молекуле. Таким образом, «рисунок метилирования» может передаваться по наследству, а от него зависят активность генов и, соответственно, фенотипические признаки. Внегенетическая наследственная информация может передаваться и с другими молекулами, например, РНК, которые имеются в цитоплазме половых клеток (см., например, раздел «Контролируемая перестройка генома у инфузорий» в главе «Управляемые мутации»). Эпигенетическая наследственность порой приводит к нарушениям основополагающих законов классической генетики. Многие эпигенетические механизмы в общих чертах уже расшифрованы, но некоторые оказались на редкость неподатливыми. Типичным примером являются так называемые парамутации, обнаруженные полвека назад у кукурузы. Несмотря на упорные усилия, природу этого явления до сих пор так и не удалось разгадать.

Парамутация — это устойчивое, наследуемое изменение свойств гена, которое возникает в результате взаимодействия разных вариантов (аллелей) этого гена между собой и при котором в отличие от обычных мутаций нуклеотидная последовательность гена не меняется. Результаты парамутации выглядят очень странно. Свойства организма у парамутантных особей не соответствуют тому, что «записано» в их генотипе. Допустим, вы унаследовали от обоих родителей гены голубых глаз, а глаза у вас при этом почему-то карие, как у одного из дедушек. Но у дедушки-то имеется «ген кареглазости», а у вас его нет! Впрочем, у людей парамутации пока не обнаружены.

С парамутациями можно было еще как-то мириться, пока дело касалось только растений. Однако в 2006 году парамутации были обнаружены у животных, а именно у мышей. Это стало одной из самых громких сенсаций последних лет в области генетики.

Честь открытия принадлежит французским ученым из Университета Ниццы, которые работали с линией лабораторных мышей, несущих мутацию в гене Kit. Этот ген кодирует многофункциональный белок, влияющий, помимо прочего, на образование темного пигмента меланина. В свое время генетики, изучавшие работу этого гена у мышей, искусственно создали неработающий мутантный вариант гена. У мышей, гетерозиготных по этой мутации, то есть имеющих одну нормальную копию гена и одну измененную, Kit+/-, лапки и кончик хвоста остаются белыми. Гомозиготы по этому гену — обладатели двух испорченных копий гена, Kit-/-, — умирают вскоре после рождения.

Скрещивая между собой гетерозигот Kit+/-, французские генетики столкнулись с нарушением законов генетики. Согласно этим законам, четверть потомства должна была сразу погибать, получив два варианта испорченного гена Kit-/-, половина — иметь белые лапы и хвост, это генотип Kit+/-, и четверть — иметь нормальную темную окраску, это генотип Kit+/+. Вместо этого из 57 выживших мышат, полученных от восьми скрещиваний, только три оказались нормально окрашенными, а остальные 54 имели белые лапы и хвост.

Генетический анализ показал, что половина белохвостых мышат имеет генотип Kit+/+,то есть у них попросту нет мутантного варианта «гена белохвостости». Эти мыши обязаны были иметь нормальную окраску! А получалось, что мыши унаследовали от родителей некий врожденный признак, не унаследовав генов, ответственных за формирование этого признака.

Если скрестить этих аномальных мышей — белохвостых, но не имеющих «гена белохвостости» — друг с другом, то потомство их тоже оказывается белохвостым. Правда, в последующих поколениях признак проявляется все слабее и в конце концов сходит на нет. Признаки организма наконец приходят в соответствие с генотипом.

Дальнейшие опыты показали, что если хотя бы один из родителей мышонка (неважно, отец или мать) — белохвостый, то и мышонок с большой вероятностью будет белохвостым независимо от того, есть ли «ген белохвостости» у него самого.

Стало очевидно, что носителем наследственной информации в данном случае является не последовательность нуклеотидов в молекуле ДНК, а что-то другое. Естественно, подозрение пало в первую очередь на РНК — второй класс «информационных» молекул клетки.

Ученые предположили, что белохвостость мышонка с генотипом Kit+/+ может быть вызвана тем, что в оплодотворенную яйцеклетку, из которой он развился, попала родительская РНК, считанная с мутантной копии гена Kit. Хотя у самого мышонка обе копии гена Kit нормальные, присутствие «мутантной» РНК может как-то повлиять на их работу.

Это предположение подтвердилось. Исследователи обнаружили, что у гетерозигот Kit+/- с мутантной копии гена Kit считывается «мутантная» РНК, которая в дальнейшем распадается на фрагменты разной величины. Если выделить эти фрагменты и ввести их в оплодотворенную яйцеклетку, полученную от диких серохвостых родителей, из яйцеклетки развивается белохвостый мышонок, не имеющий «гена белохвостости». По-видимому, эти фрагменты РНК не только регулируют прочтение гена Kit, но и каким-то образом самовоспроизводятся, иначе они не могли бы передаваться в ряду поколений. Однако механизм самовоспроизведения этих РНК у мышей разгадать пока не удалось.

Ученые также обнаружили, что в сперматозоидах белохвостых мышей Kit+/- резко повышено содержание РНК по сравнению с нормальными сперматозоидами. Это свидетельствует об активной работе ряда генов, в том числе и гена Kit. В норме в сперматозоидах большинство генов «молчит» и РНК почти не образуется. Что бы это значило? Ответа пока нет.

—————

Живые организмы — не компьютеры. Работа французских генетиков, обнаруживших роль РНК в наследовании морфологических признаков у мышей, наряду с другими недавними открытиями показывает, что классические представления о природе «наследственной информации» и механизмах ее «прочтения» слишком упрощены. В действительности все гораздо сложнее. Приходится признать, что аналогии между живыми организмами и искусственными информационными системами, например компьютерами, вошедшие в моду в конце XX века, в значительной степени неправомочны. В отличие от компьютера в живых системах так называемая «информация», ее носители, а также «устройства» для ее прочтения и реализации оказываются слиты воедино и практически неразделимы.

Например, РНК оказывается не только «результатом прочтения» генетического кода и средством передачи информации от ДНК к системе синтеза белка, но и активным участником и регулятором самого процесса «прочтения», способным менять смысл читаемых «сообщений» (см., например, раздел «Наследие РНК-мира» в главе «Происхождение жизни»). Представьте себе текст, умеющий сам себя редактировать, или жесткий диск, который в зависимости от записанных на нем байтов информации приобретает разные физические свойства и активно вмешивается в работу считывающего устройства — например, заставляет пропустить или повторно прочесть некоторые участки. Или, как в случае с парамутациями, представьте себе, что вы хотите перенести информацию с одного компьютера на другой при помощи дискеты, однако ваша дискета помнит, в каких компьютерах побывала раньше и какие файлы ей там встречались, и на основе этих знаний она начинает по собственному произволу редактировать записанный на ней текст. В итоге до компьютера-«реципиента» вы донесете не то, что скопировали, а нечто совсем иное. Не случайно некоторые ведущие теоретики в настоящее время ставят под сомнение саму применимость понятия «информация» к последовательностям нуклеотидов ДНК и РНК.

—————

Более того, совершенно ясно, что передача информации от родителей к потомкам при помощи РНК является, возможно, необходимым, но явно не достаточным условием парамутации. Это хорошо видно из результатов исследования парамутаций у кукурузы — растения, у которого данный феномен активно изучается уже полвека.

Классический пример парамутации у кукурузы дает ген pl1, от которого зависит окраска пыльников, то есть той части тычинки, в которой образуется пыльца. Этот ген при одной и той же последовательности нуклеотидов может находиться в одном из двух состояний: «активном» (в этом случае пыльники получаются пурпурные) и «неактивном» (светлые пыльники). Фокус состоит в том, что неактивное состояние гена является как бы «заразным», то есть активный ген pl1, побывав в одной клетке со своим неактивным «собратом», сам становится неактивным.

Согласно законам генетики при скрещивании двух гетерозиготных растений (то есть таких, у которых одна копия гена активна, а вторая нет) четверть потомков должна иметь пурпурные пыльники. Однако этого не происходит, у всех потомков пыльники оказываются светлыми, и в последующих поколениях пурпурная окраска пыльников тоже не появляется. Это происходит потому, что активный ген, побывав в гетерозиготном состоянии с неактивным, меняет свои свойства и переходит в неактивное состояние. В таком неактивном виде он затем передается по наследству. Это и есть парамутация.

Мы уже знаем, что большую роль в поддержании «переключенного» состояния гена при парамутации играют молекулы РНК, передающиеся от родителей к потомкам. Кроме того, в опытах с кукурузой недавно удалось показать, что для устойчивой передачи парамутации из поколения в поколение необходим фермент, размножающий молекулы РНК (РНК-зависимая РНК-полимераза, см. главу «Происхождение жизни»). И еще было установлено, что многие другие гены тоже участвуют в поддержании устойчивости парамутантного состояния, но в чем конкретно состоит функция этих генов, никто до недавнего времени не знал.

В отличие от «настоящей» мутации парамутация у кукурузы может сравнительно легко ревертироваться, то есть вернуться в исходное состояние. Например, неактивная версия гена pl1 может превратиться обратно в активную, если произойдут определенные мутации (настоящие, а не «пара-») в других генах.

У кукурузы удалось выявить 10 генов, мутации в которых могут приводить к возвращению неактивного гена pl1 в активное состояние. Это значит, что нормальная работа этих генов необходима для поддержания парамутантного состояния. Чтобы понять механизм парамутации, очень важно выяснить, что это за гены и что они кодируют. До недавнего времени была известна функция только одного из них — было показано, что он кодирует РНК-зависимую РНК-полимеразу (см. выше).

В 2007 году американские генетики предприняли очередную попытку разгадать тайну парамутаций у кукурузы. И ответ, казалось, был уже почти у них в руках. Еще бы одно маленькое усилие, и… В общем, история получилась вполне детективная.

Исследователи сосредоточили свое внимание на одном из вышеупомянутых десяти генов, необходимых для парамутации. Этот ген называется rmr1, и до сих пор никто понятия не имел, как он работает и что кодирует. Оказалось, что он кодирует не известный ранее белок, похожий по своей структуре на ферменты, управляющие метилированием ДНК. Это позволило предположить, что поддержание «парамутантного» состояния как-то связано с метилированием ДНК. Заодно наметилась и связь с РНК-зависимой РНК-полимеразой, которая тоже нужна для парамутации, как было показано ранее. Дело в том, что РНК-зависимая РНК-полимераза размножает маленькие молекулы РНК, которые тоже участвуют в регуляции метилирования ДНК.

Итак, можно было ожидать, что парамутация как-то связана с метилированием ДНК в окрестностях гена рl1.

Ученые обратили внимание на то обстоятельство, что перед началом гена pl1 имеется некодирующий участок ДНК, представляющий собой фрагмент транспозона. Надо сказать, что метилирование ДНК используется в том числе и для инактивации транспозонов.

Кусочек транспозона, расположенный перед началом гена pl1, как выяснилось, по-разному метилируется у нормальных растений и у мутантов с неработающим геном rmr1 (у первых он метилируется сильнее). Кроме того, при работающем гене rmr1 в клетках растений была выявлена пониженная концентрация молекул РНК, считанных с гена рl1, по сравнению с растениями, у которых ген rmr1 не работал. Скорость транскрипции (считывания) гена pl1, однако, была одинаковой в обоих случаях. Это значит, что от гена rmr1 зависит не скорость считывания, а устойчивость (стабильность) уже считанных с гена рl1 молекул РНК.

На этом этапе исследователи, казалось, уже вплотную подошли к пониманию механизма парамутации. Разрозненные факты вроде бы начали складываться в цельную картину. Можно было предположить, что «активное» состояние гена рl1 соответствует низкому уровню метилирования фрагмента транспозона перед его началом, а «пассивное» — высокому; что ген rmr1 регулирует уровень метилирования, а уровень метилирования в свою очередь определяет стабильность молекул РНК, считанных с гена рl1 (и тем самым определяет «активность» гена).

Хотя эту схему трудно назвать простой, дальнейшие эксперименты показали, что в действительности все еще сложнее. Стало ясно, что истинный механизм парамутации иной, и загадка в итоге так и осталась неразгаданной.

Ученые выявили два факта, которые говорят о том, что уровень метилирования фрагмента транспозона перед началом гена pl1 не является определяющим для возникновения парамутации.

Во-первых, если бы это было так, то в случае нормально работающего гена rmr1 уровень метилирования у «парамутантных» растений должен быть выше, чем у «непарамутантных». Но это не подтвердилось: уровень метилирования у таких растений оказался одинаковым (высоким). Во-вторых, оказалось, что ген rmr1 необходим только для устойчивого наследования парамутации, но не для ее возникновения.

Таким образом, механизм парамутации у кукурузы по-прежнему неизвестен. Может быть, это явление связано с метилированием каких-то других участков ДНК или с какими-то иными эпигенетическими модификациями. Метилирование кусочка транспозона перед началом гена рl1, очевидно, необходимо для сохранения неактивного состояния гена, но таких «необходимых, но не достаточных условий» в принципе может быть много.

Скорее всего, выявленные на сегодняшний день случаи парамутаций — лишь верхушка айсберга, основу которого составляют неизвестные пока аспекты эпигенетической наследственности. Нужно иметь в виду, что существует не так уж много генов, которые так четко и ясно проявляются в фенотипе, как ген рl1, влияющий на окраску пыльников. Не случайно большинство известных парамутаций связаны именно с окраской, будь то пыльники кукурузы или хвосты мышей. Другие парамутации труднее обнаружить, и они пока остаются незамеченными.

—————

Что общего у цветковых растений и млекопитающих? Парамутации обнаружены у цветковых растений и млекопитающих — двух групп, венчающих эволюционное древо, соответственно, растений и животных. Очень может быть, что это не случайность. Именно в этих двух группах организмов наибольшее развитие получил родительский геномный импринтинг (см. главу 8). Как мы помним, суть этого явления в том, что родители целенаправленно манипулируют наследственными свойствами потомства, метилируя некоторые гены в своих половых клетках. Ранее мы также упоминали о возможной связи геномного импринтинга с тем обстоятельством, что из всех животных именно у млекопитающих в ходе индивидуального развития очень рано начинают работать собственные гены эмбриона (см. главу 5). Итак, три особенности: парамутации, импринтинг и раннее включение эмбриональных генов. Существует ли между ними реальная связь, и если да, то какова ее природа? Вот еще одна из волнующих неразрешенных загадок, ждущих своего ответа.

Может быть, все эти три особенности связаны с тем, что именно у млекопитающих и цветковых растений материнский организм вкладывает очень много ресурсов в свое потомство. Это порождает «конфликт интересов» между полами: отец заинтересован в том, чтобы потомство получило от матери как можно больше ресурсов, а мать пытается сохранить силы, чтобы в будущем произвести новое потомство. Геномный импринтинг — результат этого конфликта. Отец выключает в своих половых клетках те гены, работа которых выгодна матери, но не эмбриону, а мать отключает в своих яйцеклетках те гены, работа которых выгодна эмбриону, но вредна для нее самой. Раннее включение генов эмбриона могло развиться в связи с тем, что как отцу, так и матери выгодно, чтобы «отредактированные» ими гены эмбриона включились пораньше. Может быть, парамутации являются побочным следствием этих приспособлений?

—————

Животные держат мобильные генетические элементы под контролем

С мобильными генетическими элементами (МГЭ) мы уже познакомились (см. главу «Наследуются ли приобретенные признаки?»), однако у читателя может сложиться неполное и не совсем точное представление об этих удивительных объектах, находящихся на грани живого и неживого, если не упомянуть об одном важном открытии, которое сделали недавно генетики. До сих пор МГЭ обычно воспринимались как активные преобразователи чужих геномов, которые по собственной прихоти прыгают с место на место, встраиваются в разные участки хромосом и вносят элемент хаоса в слаженную работу генетических комплексов.

И вдруг оказалось, что геномы высших организмов вовсе не являются пассивными «жертвами» МГЭ. Эукариотическая клетка, как выяснилось, умеет контролировать деятельность этих не в меру шустрых нахлебников.

—————

Возможны ли в биологии «открытия на кончике пера»? Открытые недавно молекулярные механизмы, при помощи которых эукариотическая клетка управляет мобильными генетическими элементами, оказались невероятно сложными, запутанными и даже на первый взгляд громоздкими. Для того чтобы разобраться в них, могут понадобиться годы. И все это оказалось полной неожиданностью для ученых. Никто не подозревал, что может существовать такая система. Никакие теории этого не предсказывали. Впору задуматься: сколько еще сюрпризов нас ждет? И когда наконец мы наберем достаточно знаний, чтобы делать открытия «на кончике пера» — так, как астрономы начали открывать не видимые простым глазом планеты Солнечной системы после того, как поняли общие законы движения планет? Пока же открытия чаще всего сваливаются на биологов как снег на голову.

Один из редких примеров удачного «умозрительного» открытия в молекулярной биологии, впоследствии подтвержденного экспериментально, — это открытие теломеразы, фермента, который восстанавливает кончики хромосом, укорачивающиеся после каждого клеточного деления. Российский ученый А. М. Оловников «вычислил» теломеразу за много лет до того, как она была реально открыта. Поняв, что кончики хромосом должны укорачиваться (потому что фермент, который копирует ДНК, не может скопировать ту ее часть, к которой он прикрепляется в самом начале процесса копирования), Оловников рассудил, что, следовательно, должен существовать особый фермент, который умеет восстанавливать укоротившиеся кончики. Иначе все клетки очень быстро потеряли бы способность делиться. Самое удивительное, что западные ученые признали это достижение Оловникова, ссылаются на его работы и считают его одним из создателей «теломерной теории старения». Обычно подобные озарения остаются не замеченными и не признанными научным сообществом. Сейчас в цене эксперименты, а не рассуждения.

—————

Система управления мобильными элементами впервые была найдена у плодовой мушки дрозофилы в 2006 году. Оказалось, что в процессе созревания сперматозоидов у дрозофилы «включаются» гены белков семейства Piwi, а также гены особых маленьких регуляторных РНК, которые получили название пиРНК (piRNA, сокращение от Piwi-interacting RNAs).

ПиРНК — короткие, длиной в 24–29 нуклеотидов, молекулы, нуклеотидные последовательности которых совпадают с теми или иными участками различных МГЭ. ПиРНК присоединяются к Piwi-белкам и «программируют» их на распознавание и уничтожение молекул мРНК, считанных с мобильных элементов. Тем самым подавляется активность МГЭ.

У дрозофилы активность генов Piwi была зарегистрирована только в семенниках самцов (в созревающих сперматоцитах). Почему-то мушки считают необходимым приглушить свои МГЭ именно во время сперматогенеза. Возможно, это объясняется тем, что МГЭ именно в сперматоцитах становятся особенно активными.

В дальнейшем выяснилось, что белки семейства Piwi есть и у млекопитающих. Они тоже синтезируются во время сперматогенеза и образуют комплексы с пиРНК. В 2007 году американским биологам удалось показать, что у млекопитающих (а именно у мышей, на которых проводились опыты) Piwi-белки и пиРНК выполняют примерно те же функции, что и у плодовой мушки. Однако то, что обнаружили исследователи, в действительности похоже на верхушку айсберга и ставит гораздо больше новых вопросов, чем дает ответов.

Выяснилось, что мышиные пиРНК весьма многочисленны и разнообразны (как и у дрозофилы). Последовательности многих из них совпадают с участками известных мышиных МГЭ, следовательно, они способны «направлять» деятельность Piwi-белков на МГЭ. Однако есть очень много других пиРНК, последовательности которых совпадают либо с участками рабочих генов, либо с фрагментами генома, функции которых неизвестны. Зачем нужны эти пиРНК, пока невозможно сказать.

Ученые установили, что отключение генов Piwi-белков приводит к резкому росту активности мобильных генетических элементов в сперматоцитах. Стало ясно, что система регуляции активности МГЭ при помощи Piwi-белков и пиРНК не является уникальной особенностью насекомых. Скорее всего, она широко распространена в живой природе.

Если считать МГЭ «эгоистическими» и чужеродными объектами, своеобразными геномными паразитами, то Piwi-белки и пиРНК можно было бы назвать системой «внутриклеточного иммунитета», в которой роль «антител» выполняют пиРНК. Если же считать МГЭ полноправными составными частями единого генома, эту систему правильнее будет поставить в один ряд с другими известными механизмами генной регуляции, которые обеспечивают своевременное включение и выключение различных участков генома в зависимости от потребностей организма.

В пользу второй интерпретации свидетельствует один чрезвычайно важный факт. Оказалось, что набор пиРНК, производимых сперматоцитами, меняется с возрастом, причем весьма резко. Существует два почти непересекающихся «комплекта» пиРНК. Один из них, «ранний», обнаруживается в семенниках мышат примерно до 12–14-дневного возраста. После этого начинают производиться совсем другие, «поздние» пиРНК. Свойством подавлять активность МГЭ обладают оба комплекта, и смысл перемены пока совершенно неясен. Так или иначе, все это больше похоже не на работу иммунной системы, а на генетическую регуляцию индивидуального развития. Хотя, конечно, для окончательных выводов у нас еще слишком мало данных.

Ученые также установили, что пиРНК могут влиять на активность МГЭ не только путем «программирования» Piwi-белков, но и другим способом — через механизм метилирования ДНК. Как мы помним, это один из важных способов регуляции активности генов. В общем случае чем сильнее метилирован ген, тем слабее он работает. Метилирование ДНК осуществляется специальными ферментами. Однако вопрос о том, откуда эти ферменты «узнают», какие гены надо метилировать, а какие не надо, пока еще далек от разрешения. На растениях ранее было показано, что определенную роль в этом могут играть маленькие молекулы РНК, которые каким-то образом «указывают» ферментам гены, подлежащие метилированию. Ранее также было установлено, что многие МГЭ у млекопитающих подвергаются усиленному метилированию — это еще один способ держать МГЭ под контролем. Исследователи решили проверить, влияет ли отключение системы Piwi–пиРНК на степень метилирования МГЭ в сперматоцитах мышей. Оказалось, да, влияет, причем весьма существенно. Возможно, это свидетельствует о том, что пиРНК и Piwi-белки каким-то образом направляют деятельность ферментов, ответственных за метилирование, на нужные участки генома. У насекомых в отличие от млекопитающих метилирование ДНК для регуляции работы генов почти не используется.

И у мух, и у мышей в работе системы Piwi–пиРНК используется принцип обратной связи. Дело в том, что те «обрезки», которые получаются из считанных с МГЭ молекул мРНК в результате деятельности Piwi-белков, сами могут функционировать в качестве пиРНК, то есть связываться с Piwi-белками и управлять их работой. Чем активнее МГЭ, тем больше с них считывается молекул мРНК. Это расширяет поле деятельности для Piwi-белков, которые режут эти мРНК на кусочки. Чем больше становится в клетке таких кусочков, функционирующих в качестве пиРНК, тем эффективнее действуют Piwi-белки и тем сильнее подавляется активность МГЭ.

Очевидно, что исследователи только начали проникать в некую совершенно новую, весьма необычную область. Пожалуй, единственный обоснованный вывод, который можно сделать, состоит в том, что поведение МГЭ не является бесконтрольным, что клетка имеет реальную возможность влиять на их деятельность. Учитывая, что МГЭ играют важнейшую роль в эволюции организмов и даже могут придавать ей отчасти направленный характер, получается, что организмы в принципе способны активно регулировать собственную эволюцию. Это еще один механизм управления наследственными изменениями из числа тех, о которых рассказано в главе «Управляемые мутации».

Взаимное узнавание

Множество захватывающих тайн в биологии связано со способами взаимного узнавания на уровне молекул, клеток и организмов. Как одна молекула находит другую в безумной химической круговерти цитоплазмы? Как транскрипционный фактор находит среди миллиардов нуклеотидов ДНК тот единственный и неповторимый участок, к которому он должен прикрепиться? Откуда знают растущие нервные клетки, в какую сторону им необходимо выпустить отросток и с какой клеткой вступить в контакт? Как удается самцу насекомого безошибочно найти по запаху самку своего вида, особенно если концентрация химического сигнала в воздухе близка к нулю? Как ухитряется самка рыбки колюшки опять-таки по запаху выбрать себе в мужья такого самца, который приходится ей одновременно и не слишком близкой, и не слишком дальней родней?

Тема эта необозримо велика, и мы ее до сих пор почти не затрагивали. Не удастся нам подробно раскрыть ее и в этой последней главе. Но о двух удивительных и тесно взаимосвязанных открытиях я все-таки расскажу. Одно из них имеет отношение к иммунитету, другое — к формированию нервной системы в ходе индивидуального развития. Казалось бы, какая тут связь? Самая прямая: в обоих случаях главным действующим лицом оказался один и тот же белок из надсемейства иммуноглобулинов. И белок этот сам по себе заслуживает того, чтобы о нем рассказать. Известный в биологических кругах афоризм гласит: тот, кто не видел кораллового рифа, не зоолог. Примерно то же и здесь: кто не слышал о белке DSCAM, едва ли может представить себе, на что способны белки. Но начнем по порядку.

Первое открытие связано с иммунной системой насекомых. Как мы помним, основная обязанность иммунной системы — безошибочно распознавать любую попавшую в организм заразу, в том числе и такую, с которой раньше не приходилось встречаться. Для этого нужно иметь очень много разных белков, избирательно связывающихся с различными чужеродными веществами (антигенами). Позвоночные животные продуцируют сотни тысяч вариантов таких защитных белков — гораздо больше, чем генов в геноме. Высокое разнообразие защитных белков достигается благодаря прижизненным перестройкам генома в клетках иммунной системы — лимфоцитах. О том, как это происходит, говорилось в главе «Управляемые мутации», а здесь я только вкратце напомню самое основное.

В геноме «зародышевой линии», то есть в том геноме, который позвоночное животное получает от папы с мамой, нет генов антител как таковых, а есть наборы заготовок — несколько «кассет» похожих, но немного различающихся фрагментов будущего гена. В зреющем лимфоците специальные ферменты (потомки прирученных транспозонов — RAG-белки) режут и перекраивают геномную ДНК, чтобы собрать из этих заготовок один функциональный ген. При этом из каждой «кассеты», состоящей из десятков похожих фрагментов, случайным образом выбирается какой-то один. В разных лимфоцитах гены антител получаются разными, а общее число теоретически возможных вариантов у человека или мыши достигает трех миллионов. Приобретенный иммунитет формируется за счет того, что те лимфоциты, чьи антитела лучше других связываются с данным инфекционным агентом, усиленно размножаются, а гены их антител вдобавок еще и «подгоняются» к антигену за счет мутирования и дополнительного отбора.

Всего этого нет у беспозвоночных. Долгое время считалось, что беспозвоночным удается как-то обходиться одним лишь врожденным, неспецифическим иммунитетом и сравнительно небольшим числом иммунных белков — рецепторов, гены которых в «явном виде» присутствуют в геноме зародышевой линии и не подвергаются прижизненным перестройкам. Учитывая быструю эволюцию и вариабельность микроорганизмов, было довольно удивительно, каким образом беспозвоночные ухитряются при этом выжить.

Однако со временем открывалось все больше фактов, показывающих, что у беспозвоночных тоже формируется приобретенный иммунитет. Вот только как им это удается без прижизненных перестроек генов, оставалось неясным.

Иммунологи из Университета Джонса Гопкинса (США) обратили внимание на один весьма необычный ген, имеющийся и у позвоночных, и у насекомых. Этот ген называется DSCAM (Down syndrome cell adhesion molecule). Некоторые его мутации у человека ассоциированы с синдромом Дауна. У насекомых он, как было известно, отвечает за регуляцию роста нервных клеток, хотя как именно он это делает, никто не знал. Ген принадлежит к надсемейству иммуноглобулинов, то есть содержит иммуноглобулиновые домены (последовательности нуклеотидов, кодирующие участки белковой молекулы, предназначенные для избирательного связывания других молекул). Иммуноглобулиновые гены есть практически у всех животных. Они выполняют разнообразные рецепторные функции, далеко не всегда связанные с иммунной защитой. Например, тот же рост аксонов направляется определенными химическими сигналами, которые кто-то должен улавливать и распознавать.

После того как на матрице гена DSCAM синтезируется его РНК-копия (мРНК), она подвергается особой процедуре редактирования — альтернативному сплайсингу (см. врезку).

—————

Альтернативный сплайсинг. Как известно, почти все гены высших организмов состоят из участков, кодирующих белок (экзонов), и вставленных между ними некодирующих фрагментов (интронов). Есть мнение, что некоторые интроны являются потомками мобильных генетических элементов, бурно размножившихся в геноме древнейших эукариот (см. главу «Великий симбиоз»). В ходе прочтения гена (транскрипции) сначала синтезируется «незрелая» матричная РНК (мРНК), представляющая собой полную копию всего гена, включая интроны. Затем интроны один за другим «вырезаются» из молекулы РНК, а экзоны соединяются друг с другом. Это и называется сплайсингом. Обычно существует несколько альтернативных вариантов сплайсинга для одной и той же мРНК. Дело в том, что часть экзонов может быть вырезана вместе с прилегающими к ним интронами. В результате из одной и той же «незрелой» мРНК, содержащей, например, 7 экзонов (1, 2, 3, 4, 5, 6, 7) могут получиться разные «зрелые» мРНК: 12357, 12467, 2345 и т. д. Экзоны могут вырезаться из молекулы РНК, но не могут меняться местами. Разные мРНК станут затем матрицами для синтеза разных белков. Таким образом, благодаря механизму альтернативного сплайсинга один и тот же ген может кодировать несколько разных белков. То, какой именно белок будет производиться данным геном в каждой конкретной ситуации, зависит от сложных регуляторных систем, о которых пока еще очень мало известно.

Между прочим, тот факт, что благодаря альтернативному сплайсингу один ген может кодировать более одного белка, является явным нарушением принципа «один ген — один белок» (или «один ген — один фермент»), который был сформулирован еще в 40-е годы XX века. Данный принцип сыграл огромную положительную роль в становлении современной молекулярной биологии. На тот момент это было величайшим достижением — догадаться, что загадочные гены, молекулярная природа которых еще не была расшифрована, занимаются не чем-нибудь, а именно кодированием белков, причем каждому белку соответствует свой собственный ген. Но сегодня этот принцип устарел, как и почти все «классические догмы» образца середины прошлого века. Вот вам и еще один пример лопнувшей «абсолютной истины»!

—————

Уникальной особенностью гена DSCAM, содержащего 21 экзон, является то, что три из них представлены не в единственном экземпляре, а в виде кассет из множества немного различающихся копий. У малярийного комара, на котором проводилось данное исследование, экзон № 4 представлен в 14 экземплярах, экзон № 6 — в 30, экзон № 10 — в 38. В ходе сплайсинга сохраняется только один вариант каждого из этих экзонов. Таким образом, за счет альтернативного сплайсинга на основе единственного гена DSCAM может быть синтезировано 14 x 30 x 38 = 15 960 разных рецепторных белков. У мушки дрозофилы число вариантов еще больше: 38 016.

Такая структура гена DSCAM до боли напоминает те кассеты заготовок, из которых в лимфоцитах млекопитающих конструируются гены антител. Поэтому мысль об участии DSCAM в иммунной защите, по правде сказать, напрашивалась давно, но доказать это удалось лишь недавно, в 2006 году. Ученые обнаружили, что в присутствии разных бактерий иммунные клетки производят разные наборы сплайс-вариантов белка DSCAM. Например, в ответ на заражение кишечной палочкой резко увеличивается частота использования 8-го варианта 4-го экзона, тогда как стафилококк стимулирует синтез белков DSCAM с использованием 1-го варианта того же экзона.

Искусственное «выключение» гена DSCAM приводит к резкому снижению способности комара сопротивляться инфекциям; кроме того, в его гемолимфе (аналог крови у насекомых) начинают бурно размножаться бактерии, в норме присутствующие там в небольших количествах. Это доказывает непосредственное участие DSCAM в иммунной защите.

Строение гена DSCAM малярийного комара. Вертикальными отрезками показаны экзоны. Иммуноглобулиновые экзоны 4, 6 и 10 представлены кассетами из 14, 30 и 38 альтернативных вариантов. Зрелая РНК после сплайсинга будет содержать лишь по одному варианту каждого из этих трех экзонов.

Ученым удалось показать, что отключение тех сплайс-вариантов белка DSCAM, которые синтезируются в присутствии кишечной палочки, лишает комара способности бороться именно с кишечной палочкой, но не со стафилококком, и наоборот. Выяснилось также, что сплайс-варианты DSCAM, синтезируемые в ответ на заражение той или иной бактерией, лучше других «прилипают» именно к этой бактерии.

Изменения в спектре синтезируемых сплайс-вариантов DSCAM, спровоцированные контактом с бактериями, сохраняются в течение как минимум 18 часов после того, как контакт прекратился (что происходит потом, ученые просто не проверяли). Это очень похоже на явление приобретенного иммунитета!

Таким образом, различные сплайс-варианты белка DSCAM в известной мере аналогичны антителам позвоночных (хотя антитела, конечно, более избирательны и эффективны). Образование разнообразных сплайс-вариантов DSCAM осуществляется на основе того же комбинаторного принципа, что и образование антител у позвоночных. В обоих случаях используются случайный выбор и комбинирование отдельных фрагментов гена, каждый из которых представлен в геноме в виде нескольких альтернативных вариантов. Только у позвоночных это «перекраивание» генетической информации осуществляется на уровне ДНК, а у насекомых — на уровне РНК.

Это исследование, на мой взгляд, представляет собой крупный прорыв не только в изучении иммунной системы беспозвоночных, но и в понимании общих принципов иммунитета в целом. Можно ожидать, что дальнейшие исследования приведут к открытию новых черт сходства между иммунными системами далеких друг от друга групп организмов.

Каждая нервная клетка имеет десятки и сотни отростков, которые в ходе развития организма соединяются в строго определенном порядке. Как отростки нейронов находят друг друга и что позволяет им не ошибиться? Оказалось, что важную роль в этом играет иммунологический механизм различения «своих» и «чужих».

За рамками исследования осталось множество важных вопросов. Например, осталось неясным, каким образом осуществляется регуляция сплайсинга. Откуда комар «знает», какие варианты белка DSCAM нужно синтезировать для борьбы с кишечной палочкой, а какие — для защиты от стафилококка? В любом случае результат удивительный: целая иммунная система — в одном-единственном белке!

Второе недавнее открытие, связанное с белком DSCAM, позволило понять, какую роль играет это биохимическое чудо в развитии нервной системы.

До сих пор было известно только то, что у насекомых с мутациями в гене DSCAM нервная система развивается неправильно. Механизм участия DSCAM в индивидуальном развитии был неясен, хотя «общую идею» нетрудно было угадать. Чтобы из делящихся клеток зародыша, которые все имеют одну и ту же заложенную в них «программу поведения» (геном), сформировалась не аморфная клеточная масса, а сложный организм, эти клетки должны знать, в какую сторону им расти или переползать, к кому приклеиваться, а от кого, напротив, отделяться. Для этого им нужно как-то узнавать друг друга, понимать, кто есть кто в их окружении. Такое взаимное узнавание клеток особенно важно в ходе развития нервной системы, чтобы отростки нейронов соединялись друг с другом правильным образом и формировали «правильные» нервные контуры и сети.

Что касается белков иммуноглобулинового надсемейства, то они как раз и специализируются на выполнении задач такого рода, то есть на персональной идентификации и различении «своих» и «чужих». Поэтому можно было предвидеть, что для этих белков найдется работа не только в иммунной системе, но и в других ситуациях, когда нужно разбираться, кто есть кто в клеточном или социальном окружении. Однако, повторю, до недавнего времени никто не знал, каким именно способом белок DSCAM реализует эту функцию в ходе развития нервной системы.

В 2004 году у белка DSCAM было обнаружено очередное поразительное свойство. Оказалось, что каждый сплайс-вариант этого белка обладает способностью к так называемому «гомофильному связыванию». Это значит, что молекула данного сплайс-варианта «узнает» другую такую же молекулу и прочно связывается с ней. При этом она никогда не связывается с другими сплайс-вариантами того же белка. Совершеннейшая фантастика, если подумать! Всем известно, что молекулы ДНК и РНК легко «узнают» свои собственные копии и склеиваются с ними на основе принципа комплементарности. Но чтобы подобные свойства обнаружились у белков — в это даже поверить трудно. Тем не менее данный факт подтвержден весьма тщательными экспериментами, проверены сотни сплайс-вариантов. Механизм «гомофильного связывания» активно исследуется, но пока еще до конца не расшифрован.

Нетрудно догадаться, что эта удивительная особенность делает DSCAM идеальным молекулярным устройством для различения «своих» и «чужих». Оставалось выяснить, как это устройство используется при развитии нервной системы.

Биологи из Австрии и США в 2007 году получили ответ на этот вопрос при помощи генной инженерии. Они создали три линии генетически модифицированных мух, в каждой из которых ген DSCAM был радикально «упрощен». Из него были вырезаны все альтернативные наборы фрагментов-заготовок, кроме одного-единственного, разного в каждой из трех линий. Модифицированные мухи, таким образом, могли синтезировать только один сплайс-вариант белка DSCAM вместо 38 016.

Внесенные в геном изменения оказались летальными. Все мухи, у которых обе копии гена DSCAM были изменены (то есть гомозиготы), погибали на стадии личинки или куколки, и у этих личинок и куколок наблюдались серьезные нарушения в развитии нервной системы. Например, у нормальных мух в обонятельном отделе мозга имеются определенным образом расположенные узлы, к каждому из которых присоединяются отростки чувствительных нейронов определенного типа. У личинок-мутантов данный отдел мозга представлял собой беспорядочную массу нейронов, и отростки чувствительных клеток крепились к нему как попало. При этом ген DSCAM у этих личинок работал, и количество производимого белка DSCAM было таким же, как у здоровых насекомых. Результат был одинаков во всех трех генетически модифицированных линиях.

Авторы сделали вывод, что жизненно важным является не только белок DSCAM сам по себе, но и разнообразие его сплайс-вариантов.

Дальнейшие исследования показали, что каждый нейрон в норме производит свой собственный уникальный набор сплайс-вариантов белка DSCAM. Таким образом создается уникальная «визитная карточка» данного нейрона, что позволяет нейрону отличать свои собственные отростки от чужих.

При помощи сложных экспериментов удалось показать, что нейроны, способные синтезировать только один сплайс-вариант DSCAM, растут неправильно, если они окружены другими такими же мутантными нейронами, однако их рост становится совершенно нормальным, если их окружают обычные нервные клетки, производящие разные сплайс-варианты. Если нейрон вообще не производит белка DSCAM, он растет неправильно в любом клеточном окружении. От того, какой именно сплайс-вариант производят мутантные клетки, как выяснилось, ничего не зависит.

Таким образом, сплайс-варианты DSCAM нужны нервным клеткам для создания уникального «молекулярного паспорта», благодаря которому нейроны отличают свои собственные отростки от чужих.

Данное открытие подтверждает идею о том, что молекулярные системы различения «своих» и «чужих», основанные на иммуноглобулиновых белках, гораздо шире распространены в живой природе, чем думали когда-то, и роль их отнюдь не сводится к одной лишь иммунной защите. Осмелюсь предположить, что скоро нас ждут новые открытия в этой области.

Новые способы работы с информацией

Одна из областей, в которых наши знания остаются до обидного неполными, — это изучение той роли, которую играют молекулы РНК в обработке генетической информации. Биологи то и дело открывают новые клеточные «информационные технологии», в которых РНК оказывается главным действующим лицом, и конца этим открытиям пока не видно.

—————

Новооткрытые функции РНК подтверждают теорию абиогенеза (самозарождения жизни). Почему раньше биологи не замечали множества разнообразных функций, выполняемых в клетке молекулами РНК? Может быть, слишком привыкли думать, что «всю работу в клетке делают белки»? Похоже на то. Как только ученые осознали, что жизнь началась с РНК (это понимание пришло, как мы помним, в середине 80-х годов XX века), стало ясно также и то, что теория РНК-мира имеет проверяемое следствие. Из нее следует, что, если хорошенько поискать, в современных живых клетках могут найтись ранее незамеченные «следы» эпохи РНК-мира — в том числе разные неожиданные функции, выполняемые молекулами РНК. Это следствие блестяще подтвердилось, и новые открытия продолжают его подтверждать по сей день, так что и конца не видно. Это одно из тех обстоятельств, которые все больше убеждают нас в том, что жизнь действительно возникла естественным путем из неживой материи. Почему? Судите сами.

Из теории естественного происхождения жизни (абиогенеза) следовало, что должна существовать молекула, с которой «все началось», — молекула, способная одновременно справляться и с «работой», и с хранением наследственной инофрмации. Это было проверямое следствие — единственный реальный способ проверить научную теорию, которую нельзя подтвердить или опровергнуть прямым наблюдением (а такова большая часть научных теорий). Проверяемое следствие — чрезвычайно ценная вещь! Именно по наличию или отсутствию проверяемых следствий всегда можно отличить научную теорию от ненаучной. Например, креационизм не является научной теорией как раз потому, что не имеет проверяемых следствий. Ведь Бог мог сотворить жизнь и Вселенную с абсолютно любым строением и свойствами. Какое бы неожиданное свойство мы ни обнаружили, всегда можно сказать: это так, потому что так было угодно Богу. Мотивы высшего разума мы постичь не можем, поэтому не можем и предсказать ничего конкретного о тех областях реальности, которые еще не изучены. Наука избегает таких теорий, из которых ничего конкретного не следует. Из теории абиогенеза, напротив, следовало нечто вполне конкретное: должна существовать молекула с такими-то свойствами. Подходящую молекулу нашли — ею оказалась РНК. Проверяемое следствие подтвердилось, и теория абиогенеза заработала себе очередной большой и жирный «плюсик». Теория РНК-мира после этого стала важной составной частью теории абиогенеза. Из нее, в свою очередь, вытекали новые проверяемые следствия, которые сегодня подтверждаются, и тем самым новые «плюсики» зарабатывает и теория РНК-мира, и вмещающая ее теория абиогенеза.

—————

Взять, к примеру, тот же альтернативный сплайсинг. Каким образом клетка «решает», какой из вариантов сплайсинга нужно выбрать в данной ситуации (и, следовательно, какой из вариантов белка синтезировать)? Об этом пока известно очень мало. Удалось выяснить, что такая регуляция требует участия особых белков — регуляторов сплайсинга. Не было оснований думать, что сплайсинг регулируется чем-то еще, кроме белков. И вдруг ученые из Йельского университета (США) публикуют статью, в которой описан совершенно иной способ регуляции, где белки не участвуют вообще. Ключевую роль в нем играет сама молекула РНК, подвергающаяся сплайсингу.

Способность молекулы РНК самостоятельно определять свою судьбу и выбирать способ, каким она будет перекроена, определяется наличием в одном из ее некодирующих участков (интронов) специфической последовательности нуклеотидов, которая сама собой сворачивается в особую трехмерную структуру — РНК-переключатель. О том, что это такое, мы уже рассказывали в главе «Происхождение жизни».

Исследование проводилось на грибе Neurospora crassa, известном широкой публике как розовая хлебная плесень. По иронии судьбы, на этом же объекте в 40-е годы прошлого века были получены сенсационные результаты, позволившие сформулировать принцип «один ген — один белок». Сейчас на нейроспоре изучают альтернативный сплайсинг — явление, опровергающее (или, лучше сказать, уточняющее и расширяющее) этот замечательный принцип.

У нейроспоры, как и у ряда других эукариот, в генах, участвующих в биосинтезе тиамина (витамина B1), были обнаружены участки, сходные с известными бактериальными РНК-переключателями, которые реагируют на производное тиамина — тиамин-пирофосфат. Большинство известных РНК-переключателей действуют по принципу отрицательной обратной связи. Они реагируют на вещество, синтезируемое белковым продуктом данного гена, и при достаточно высокой концентрации этого вещества отключают ген.

Примерно то же самое наблюдалось и в данном случае. Повышение концентрации тиамин-пирофосфата в клетках гриба приводит к снижению производства белков, ответственных за синтез тиамина. Было показано, что если удалить из соответствующих генов участки, похожие на бактериальные РНК- переключатели, то производство тиамин-синтезирующих белков перестает зависеть от концентрации тиамин-пирофосфата.

Таким образом, стало ясно, что участки грибных генов, похожие на РНК-переключатели, действительно являются таковыми. Оставалось лишь выяснить механизм их действия, то есть понять, как они блокируют работу «своих» генов. У бактерий РНК-переключатели делают это либо на этапе транскрипции (первичного «прочтения» гена), либо на этапе трансляции — синтеза белка на матрице мРНК.

У эукариот, как выяснилось, дело обстоит иначе — работа гена блокируется на этапе сплайсинга. Бактериям это недоступно, поскольку у бактерий сплайсинга нет (почти нет, если быть точным). Тиаминовый РНК-переключатель в генах Neurospora crassa располагается в первом интроне, недалеко от начала гена. Если в клетке мало тиамин-пирофосфата, РНК- переключатель «приклеивается» одной из своих петель к строго определенному месту на молекуле мРНК. Это место является одним из потенциальных мест сплайсинга, то есть именно здесь в ходе сплайсинга молекула мРНК может быть разрезана. Однако приклеившийся РНК-переключатель не позволяет этого сделать, и молекула разрезается в другом подходящем месте по соседству. В результате формируется «правильная» зрелая мРНК, на основе которой синтезируется полноценный белок.

Если же в клетке много тиамин-пирофосфата, это вещество присоединяется к РНК-переключателю и изменяет его форму. Переключатель «отклеивается» от места сплайсинга и перестает его защищать. Тогда молекула РНК режется именно в этом месте, которое раньше прикрывалось РНК-переключателем. Это в конечном счете приводит к формированию «бракованной» зрелой мРНК, на базе которой полноценный белок синтезировать невозможно.

Таким образом, РНК-переключатель в зависимости от концентрации тиамин-пирофосфата направляет сплайсинг по одному из двух альтернативных путей.

На этом рисунке показано, как РНК-переключатель регулирует альтернативный сплайсинг у розовой хлебной плесени (на примере гена NMT1). Участок мРНК, вырезаемый при сплайсинге, отмечен пунктирными линиями и серыми стрелками. При низкой концентрации тиамин-пирофосфата РНК-переключатель «защищает» потенциальный сайт (место) сплайсинга, отмеченный значком в виде буквы «Т». В результате при сплайсинге вместо этого сайта используется другой, расположенный по соседству (серая стрелка). Участок мРНК, отмеченный белым цветом, не попадает в зрелую мРНК. При высокой концентрации ТРР это вещество связывается с РНК-переключателем и меняет его конфигурацию. В результате молекула РНК режется в том месте, которое раньше было прикрыто РНК-переключателем, белый участок попадает в зрелую РНК и «портит» ее.

Судя по некоторым косвенным признакам, регуляция сплайсинга при помощи РНК-переключателей может быть довольно широко распространена у эукариот. Чтобы проверить это предположение, необходима разработка эффективных методов поиска РНК-переключателей в эукариотических геномах — эти методы пока еще далеки от совершенства.

Еще одна неожиданная функция РНК обнаружилась недавно в ходе изучения механизмов репарации — починки повреждений в ДНК. Оказалось, что молекулы РНК могут играть роль матриц, информация с которых переписывается в поврежденную молекулу ДНК взамен утерянной. Процесс основан на обратной транскрипции (как мы помним из предыдущей главы, так называют переписывание информации из РНК в ДНК, то есть синтез ДНК на РНК-матрице). Изобретение обратной транскрипции, между прочим, должно было стать важным переломным моментом в развитии РНК-мира, поскольку позволило РНК-организмам перейти к хранению наследственной информации в более надежной и стабильной форме молекул ДНК. В предыдущих главах мы упоминали несколько случаев использования обратной транскрипции современными организмами: это перемещение и размножение ретротранспозонов и ретровирусов, образование ретропсевдогенов, восстановление укорачивающихся при каждом клеточном делении кончиков хромосом — теломер. И вот еще один пункт добавился к этому списку — репарация ДНК.

Если молекула ДНК повреждена — например, подверглась разрыву, — для ее починки необходима матрица, в которой последовательность нуклеотидов соответствует исходному, «правильному» состоянию поврежденного участка. Ранее считалось, что в качестве таких матриц всегда используются другие молекулы ДНК.

Потом выяснилось, что иногда эти ДНК-матрицы синтезируются путем обратной транскрипции на основе РНК при участии ретротранспозонов.

Наконец, совсем недавно ученые из Национального института экологии здоровья (США) сумели показать, что репарация возможна и непосредственно на основе РНК-матриц без предварительного изготовления ДНК-матрицы и без участия специфических ферментов — обратных транскриптаз, кодируемых ретротранспозонами.

Исследователи искусственно вызывали у дрожжей разрыв хромосомы в одном и том же строго определенном месте. Затем в клетки добавляли искусственно синтезированные короткие молекулы РНК, последовательности нуклеотидов в которых соответствовали участкам поврежденной хромосомы по краям разрыва. Оказалось, что эта процедура повышает вероятность успешной «починки» разорванной хромосомы в 500 раз.

Два основных способа «починки» разрывов двойной спирали ДНК. Первый способ (негомологичное соединение концов) чреват неточностями — потерей или вставкой лишних нуклеотидов в районе разрыва. Второй более точен, но требует наличия «запасной копии» поврежденного фрагмента ДНК. Как выяснилось, эта запасная копия не обязательно должна быть двухцепочечной ДНК (как показано на рисунке), годится и одноцепочечная ДНК и даже РНК.

Если в середину молекулы РНК, служащей матрицей для репарации, ввести несколько лишних нуклеотидов, они потом обнаруживаются в «починенной» хромосоме как раз между сшитыми краями разрыва. Это свидетельствует о синтезе ДНК на матрице РНК, то есть об обратной транскрипции.

Кроме того, это говорит об отсутствии принципиальных преград для переписывания информации из РНК в ДНК в живых клетках, что может иметь большое значение для эволюции. Уже целый ряд фактов указывает на то, что молекулы РНК иногда могут служить чем-то вроде «резервных копий» особо важных «файлов», записанных в геномной ДНК, и при потере каких-то фрагментов информации (даже целых генов!) эти резервные копии могут идти в ход. Мы уже знаем три таких примера (описанные в главе «Управляемые мутации» геномные перестройки у инфузорий, парамутации, участие РНК в репарации), а есть и другие, не поместившиеся в эту книгу. Ясно, что все это открывает большие возможности для эволюции, хотя о том, в какой мере и для чего именно они используются, мы пока можем только гадать.

—————

Сравнение геномов человека и мыши помогло обнаружить новый способ регуляции работы генов. Ну и напоследок — еще одно недавнее открытие, которое как нельзя лучше показывает, что наши знания об устройстве и функционировании живой клетки до сих пор крайне неполны, а сложность и запутанность механизмов внутриклеточной регуляции далеко превосходит все, что мы еще недавно могли себе представить.

В основе нового способа генной регуляции, только что открытого биологами из Калифорнийского университета в Беркли, лежит уже знакомый нам альтернативный сплайсинг, а также еще один механизм, называемый nonsense-mediated mRNA decay (NMD). Это можно перевести как «разрушение мРНК, опосредуемое бессмыслицей». Данный механизм представляет собой нечто вроде «внутриклеточной цензуры». Он служит для уничтожения заведомо бессмысленных молекул РНК. Особые молекулярные системы, о которых пока мало что известно, идентифицируют зрелую (то есть прошедшую сплайсинг) мРНК как бессмысленную и приговаривают ее к уничтожению в том случае, если в ней имеется «преждевременный» стоп-кодон (три нуклеотида, сигнализирующие об окончании синтеза белка). В норме стоп-кодон должен располагаться в конце каждого гена. Но в результате мутации он может образоваться в середине гена. В этом случае синтез белка обрывается преждевременно, и весь ген становится бессмысленным. Именно для выявления и «обезвреживания» таких мутаций и существует система NMD.

Открытие, о котором идет речь, было сделано в ходе анализа так называемых «ультраконсервативных» участков генома. Как известно, геномы человека и мыши довольно сильно различаются. Однако имеются и довольно длинные (до многих сотен нуклеотидов) абсолютно идентичные участки. Ясно, что такая консервативность нуклеотидных последовательностей должна иметь какой-то смысл. По-видимому, она означает, что любое изменение этих участков неизменно оказывается вредным и для человека, и для мыши, поэтому естественный отбор быстро отсеивает таких мутантов.

Некоторые ультраконсервативные участки находятся между генами и могут выполнять регуляторные функции. Другие лежат прямо внутри генов, задевая как интроны, так и экзоны. Это уже более странно, поскольку обычно структура генов и белков довольно пластична, а многие нуклеотидные замены в пределах экзонов вообще не влияют на структуру кодируемого белка. Такие замены в ходе эволюции обычно накапливаются вполне свободно.

Ученые заметили, что ультраконсервативные участки имеются во всех без исключения генах семейства SR (splicing regulators). Эти гены кодируют белки, участвующие в регуляции альтернативного сплайсинга.

Детальный анализ показал, что гены SR сами подвержены альтернативному сплайсингу, причем в результате могут получаться такие мРНК, которые должны уничтожаться системой NMD. Оказалось, что у каждого SR-гена имеются два альтернативных сплайс-варианта. Один из них представляет собой «нормальную» мРНК, которая может служить матрицей для синтеза полноценного SR-белка. Второй содержит преждевременный стоп-кодон и должен уничтожаться цензурой. Эксперименты показали, что этот второй сплайс-вариант действительно активно уничтожается системой NMD.

Обнаруженный регуляторный контур работает по принципу отрицательной обратной связи. SR-белки могут контролировать альтернативный сплайсинг не только «чужих» мРНК, но и своих собственных. Чем больше производит клетка SR-белков, тем чаще они направляют сплайсинг своих мРНК по альтернативному пути, тем самым снижая темп производства новых SR-белков. Так поддерживается некоторое постоянство концентрации SR-белков в клетке.

Как мог возникнуть такой причудливый регуляторный контур? Ведь производство SR-белков вполне могло бы контролироваться каким-нибудь менее экзотическим способом — например, при помощи транскрипционных факторов. Видимо, в данном случае при создании контура обратной связи отбор просто «зацепился» за то, что ближе лежало, а именно за способность SR-белков контролировать альтернативный сплайсинг. Аналогичным образом, активность генов, кодирующих транскрипционные факторы, обычно регулируется не чем-нибудь, а транскрипционными факторами (хотя и исключений немало). Это характерный «почерк» эволюции, совсем не похожий на разумное проектирование, а похожий скорее на самосборку чего получится из чего попало.

Десять генов, составляющих SR-семейство, родственны друг другу. Общий предок людей и мышей уже имел все десять, но у него самого когда-то был предок только с одним исходным SR-геном, от которого произошли все остальные путем последовательных дупликаций. Самое удивительное, что механизм саморегуляции с участием альтернативного сплайсинга и цензуры, судя по всему, возникал у разных представителей SR-семейства параллельно и независимо. Это видно из того, что преждевременные стоп-кодоны образуются у них в ходе альтернативного сплайсинга разными способами. У одних SR-генов имеется особый экзон со стоп-кодоном, который в норме вырезается из мРНК вместе с интронами. У других к концу мРНК после «законного» стоп-кодона может быть пришита пара-тройка лишних экзонов, в результате чего законный стоп-кодон с точки зрения системы цензуры начинает выглядеть как преждевременный. Очевидно, SR-гены имеют высокую предрасположенность к формированию таких регуляторных контуров.

Ультраконсервативными у людей и мышей обычно являются те участки SR-генов, которые непосредственно прилегают к преждевременному стоп-кодону, — но не всегда и не только. Скорее всего, уникальный консерватизм этих участков обусловлен тем, что они необходимы для правильного сплайсинга. Проверить это предположение трудно, поскольку о молекулярных механизмах сплайсинга нам известно пока очень мало. Вместе с тем у асцидии Ciona (далекого родственника позвоночных животных) тоже есть SR-гены с альтернативными экзонами, несущими преждевременные стоп-кодоны. Нуклеотидные последовательности этих генов похожи на человеческие и мышиные, но все же не идентичны им. Это значит, что ультраконсервативность в данном случае не является абсолютной. Ситуация еще сильнее запуталась совсем недавно, когда удалось экспериментально показать, что удаление некоторых некодирующих ультраконсервативных участков из генома мышей совершенно не вредит их здоровью.

Не исключено, что новооткрытый способ генной регуляции распространен довольно широко и затрагивает отнюдь не только гены — регуляторы сплайсинга. Дальнейшие исследования должны пролить свет на этот вопрос.

На мой взгляд, данное открытие говорит прежде всего о том, как мало мы еще знаем о жизни клетки и о возможных путях ее эволюционных изменений. Сколько еще подобных открытий предстоит сделать, прежде чем у нас появится достаточно оснований для построения всеобъемлющей эволюционной теории, или, как сейчас говорят, «нового эволюционного синтеза»? Думаю, много.

(Источник: Liana F. Lareau, Maki Inada, Richard E. Green, Jordan C. Wengrod, Steven E. Brenner. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements  // Nature. 2007. V. 446. P. 926–929.)

—————

Вместо заключения

Честно говоря, у меня в запасе еще целая куча подобных историй, показывающих, как мало мы еще знаем и как много предстоит открыть. Но я вынужден остановиться, потому что объем книги не может расти до бесконечности.

Давайте подведем итоги. В «Предисловии» я обещал воздержаться от глобальных обобщений и постараюсь сдержать слово. Великие обобщения делать действительно рано, но самое время указать на некоторые тенденции. Куда идет биология, в какую сторону движется теоретическая мысль, в каком направлении меняются наши представления о жизни и ее эволюции?

Пожалуй, самая очевидная тенденция состоит в том, что эволюция жизни, как мы ее понимаем, становится все менее хаотичным и все более закономерным, направленным процессом. При этом в одних отношениях у эволюции оказывается меньше, а в других — гораздо больше возможностей и степеней свободы, чем считали биологи 30–40 лет назад.

Уменьшение степеней свободы затронуло в первую очередь наши представления о макроэволюции (крупномасштабных эволюционных изменениях). Мы видим, например, что при переходе на более высокий уровень организации обязательно наблюдаются параллелизмы. Если раньше параллелизмы казались исключением, то теперь ясно, что это общее правило.

Что касается микроэволюции, то здесь степеней свободы, напротив, оказалось гораздо больше, чем было принято считать. Жизнь больше не представляется нам обреченной всегда двигаться вслепую и наугад. Отбор удачных вариантов из множества случайных изменений оказывается хоть и очень важным, первичным, но все-таки далеко не единственным способом придания эволюции направленности и смысла.

Живая клетка, как выяснилось, располагает целым арсеналом средств, позволяющих контролировать наследственные изменения. Можно, оказывается, даже приобретенные признаки сделать наследственными, если очень уж прижмет. Правда, в большинстве случаев это невыгодно, но лишняя степень свободы всегда может пригодиться.

Мы привыкли считать эволюцию очень медленным процессом, слишком медленным для того, чтобы реальные живые организмы, существующие «здесь и сейчас», могли всерьез озаботиться его направлением и последствиями. Говоря более строго, считалось, что естественный отбор не может создавать специальных приспособлений для оптимизации эволюционного процесса. Постепенно мы начинаем осознавать, что эволюция — слишком важная часть жизни, чтобы пустить ее на самотек. Она точно так же происходит «здесь и сейчас», как и все прочие жизненные процессы, и естественный отбор поэтому не может ее игнорировать. Организмы, конечно, не умеют предвидеть отдаленные последствия эволюционных изменений, но они могут и даже обязаны позаботиться хотя бы о своих непосредственных потомках. Когда самка выбирает себе в партнеры не первого попавшегося самца, а, скажем, самого крупного, яркого или определенным образом пахнущего, она тем самым направляет эволюцию в определенное русло. И пусть только попробует выбрать плохо: потомство от такого брака окажется менее жизнеспособным, и легкомысленное отношение к важнейшей жизненной задаче будет отсеяно отбором. Выбор брачного партнера — это не что иное, как целенаправленное манипулирование наследственными свойствами потомства, то есть управление эволюцией. То же самое можно сказать и о геномном импринтинге, хотя в данном случае наследственные изменения недолговечны и в следующем поколении, скорее всего, будут стерты. Но они могут оставить и неизгладимый след, потому что метилирование нуклеотидов влияет на вероятность их мутирования. Когда бактерия, испытывая голод, начинает производить склонные к ошибкам ДНК-полимеразы, чтобы повысить скорость мутагенеза, то что это, если не целенаправленное манипулирование темпами эволюции? А чего стоит история с вирусами, для которых, как выяснилось, снижение скорости мутирования смерти подобно?

Способность к эволюции, более того, необходимость эволюции заложена в самую сердцевину жизни, это ее основа, которую нельзя удалить, не уничтожив все здание.

И мы видим, что земная жизнь эволюционирует не как множество разрозненных объектов (организмов, видов, популяций), каждый из которых озабочен лишь собственным выживанием и должен полагаться только на себя. Жизнь развивается как единое целое. «Блочная сборка», информационный обмен, кооперация, симбиоз — вот на чем, как мы теперь видим, основывалось развитие жизни с самых первых ее шагов на Земле. Как это не похоже на старые представления о всеобщей безжалостной борьбе и изолированном, одиноком пути каждого отдельного вида! Мы видим, как по мере развития биологической науки бывшие «паразиты» превращаются в друзей, «мусорная ДНК» — в ведущий фактор эволюционного прогресса, индивидуальные организмы — в симбиотические сверхорганизмы.

Но не будем преувеличивать. Возможности биологической эволюции по созданию эффективных механизмов самоуправления все-таки ограничены. Как лимфоцит не может знать заранее, какая именно мутация позволит создать нужное антитело, так и самка оленя не может предугадать, к каким отдаленным последствиям приведет ее пристрастие к большерогим самцам. Без метода проб и ошибок, без элемента случайности и без отбора эволюция обойтись все-таки не может. Однако со временем механизмы эволюции совершенствуются, точно так же, как органы дыхания и пищеварения. Куда это может привести? Не будет ли в конце концов преодолено и это принципиальное ограничение, не появится ли у эволюции возможность предвидеть результаты генетических изменений и проектировать их на основе этого знания?

Создается впечатление, что эволюция в данный момент как раз работает над решением этой проблемы. Она уже произвела на свет — может быть, в качестве первой пробы — довольно необычный вид животных, который не только научился у агробактерий основам генной инженерии, но и, кажется, стоит на пороге понимания последствий своих поступков.

Впрочем, эта тема явно выходит за рамки нашей книги. Я обещал в «Предисловии», что в книге не будет ничего человеческого, и постарался сдержать обещание. Но только сейчас, когда мы подошли к финалу, начинает по-настоящему ощущаться вся важность и объемность недосказанного. Думаю, что это ощутили и вы, дорогие читатели. Что ж, это может стать поводом для продолжения разговора.

Pages:     | 1 |   ...   | 4 | 5 ||
Похожие работы:

«Приложение № 3 к Административному регламенту по предоставлению государственной услуги по регистрации опасных производственных объектов в государственном реестре опасных производственных объектов, утверждённому приказом Федеральной службы по э...»

«Задания для учащихся Тема "Геоэкологические проблемы"Инструкция: изучите презентацию с образцом выполнения; выполните тест из 20 вопросов; загрузите выполненное задание на страницу курса.1. Снежные лавины – одно из наиболее грозных и опасных природных явлений. В каком из перечисленных регионов России снежные лавины предста...»

«Контрольные работы. 9 класс. 1 четверть. Тема "Эволюционное учение". Часть 1.1. Мелкие систематические группы – виды, роды, семейства – в процессе эволюции возникают путем а) ароморфоза, б) идиоадаптации, в) биологического прогресса.2. В чём проявляется творческая роль естестве...»

«Введение в феномен посттравматического роста (ПТР) Все мы знаем высказывание, сделанное Ницше 1888 году: Всё в жизни, что меня не убивает, делает меня сильнее. Это выражение заключает в себе суть феномена пост...»

«ЗАНЯТИЕ 9Тема: Последствия катастрофы на Чернобыльской АЭС в Белоруссии (генетические, биологические, экологические, демографические и т.д.). Цели: 1. Сформировать понятие о характере загрязнения окружающей среды в Беларуси и его последствиях, связанное с катастрофо...»

«ФЕДЕРАЛЬНАЯ СЛУЖБАПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ (РОСТЕХНАДЗОР)ПРИКАЗ № _ Москва О внесении изменений в Административный регламент Федеральной службы по экологическому, технологическому и атомному надзору по предоставлению государственной услуги по...»

«Классный час на тему: "Мы – дети Земли"Подготовила: учитель начальных классовБелецкая Лариса АлимовнаКлассный час на тему: "Мы – дети Земли" Цели: 1. Формировать первоначальные представления учащихся об экологии и ее роли в жизни людей, дать информацию о Всемирном Дне Земли (22 апре...»

«Б.12.2. Взрывные работы на открытых горных разработках и специальные взрывные работы Тема 1 1. Каким федеральным органом исполнительной власти осуществляется лицензирование деятельности, связанной с обращением взрывчатых материалов промышленного назначения? Ростехнадзором. МЧС России. Совместно Ростехнадзором и МЧС Росси...»

«МБОУ Малозиновьевская основная общеобразовательная школа Урожайность разных сортов картофеля, выращенных на пришкольном участке Исследовательская работа по биологии Выполнили: ученицы 8 класса Шор...»

«ЗАНЯТИЕ № 10. Тема: Энергия, ее виды, способы преобразования, транспортировки. Цели: 1. Сформировать знания об энергии, ее видах, способах преобразования и транспортировки.2. Развивать память, умение логически мыслить, находить причинно-следственные связи в при...»

«Certification File n° FORMTEXT Бланк заявки на сертификацию идентификационная карточка организации Application form / Company Identity Card1COMPANY DETAILS / РЕКВИЗИТЫ КОМПАНИИНазвание компании:Corporate Name: FORMTEXT Принадлежность к Группе:Affiliation...»

«Утверждаю Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации Г.Г.ОНИЩЕНКО 29 марта 2012 годаДата введения: 29 марта 2012 года4.2. МЕТОДЫ КОНТРОЛЯ.БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫПОРЯДОК ОРГАНИЗАЦИИ И ПРОВЕДЕНИЯ ЛАБОРАТОР...»

«УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ"МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЛИНГВИСТИЧЕСКИЙ УНИВЕРСИТЕТ" Белорусская ассоциация американских исследований Белорусская ассоциация преподавателей английского языка п р о в о д я т 12 – 14 мая 2016 года (г. Минск, МГЛУ) XXV МЕЖДУ...»

«Приложение           к постановлению Правительства Республики Казахстан от " " 2017 года № Утверждены          постановлением Правительства Республики Казахстан от 30 декабря 2013 года № 1434 Основные положения Генеральной схемы организации территории Республики Казахс...»

«Вопросы к зачету по курсу "Природное наследие" Наследие как феномен. Основные признаки наследия. Основные категории наследия: природное, культурное и природно-культурное, нематериальное культурное наследие. Географичность фен...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования"КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ"КУРС ЛЕ...»

«Задания первого (школьного) этапа республиканскойолимпиады по биологии 9 класс 2015-2016 год Уважаемые участники олимпиады! Вам предлагаются задания, включающие две части (А и Б)50,5 баллов Часть А включает 25тестовых заданий, на каждое из которых предлагается 3-5 ответов (А, В...»

«Личная безопасность и свобода в техногенной системе (Personal security and freedom in technogenic system) Экология духа Уважаемые дамы и господа! Я хотел бы поговорить о тенденциях в развитии нашей цивилизации, которые лежат на поверхности, но в то же время остаются незамеченн...»

«Российский химико-технологический университет им Д.И.Менделеева Экологические аспекты производства аммиака Мультимедийный курс для средней школы Состоит из двух частей – Информационный файл (Word 2007) и Презентация (Power Point 2007).Работа выполнена коллективом кафедры процессов и аппаратов химической техн...»

«СТРАТЕГИЧЕСКАЯ ПРОГРАММА ИССЛЕДОВАНИЙТЕХНОЛОГИЧЕСКАЯ ПЛАТФОРМА"МАЛАЯ РАСПРЕДЕЛЕННАЯ ЭНЕРГЕТИКА" Москва, 2012СОДЕРЖАНИЕВВЕДЕНИЕ1. ТЕНДЕНЦИИ РАЗВИТИЯ РЫНКА И ТЕХНОЛОГИЙ В СФЕРЕ...»

«"Экология и Профессия" Классный час в 9 "Б" классе Неделя Экологии в школе "Все мы пассажиры одного корабля по имени "Земля", и пересесть из него просто некуда". (Антуан де Сент – Экзюпери) Цель: познакомить...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО "Новосибирский национальный исследовательский государственный университет" Факультет естественных наукУТВЕРЖДАЮ: 997585113665 1143000124460Декан ФЕН НГУ, профессор _ Резников В.А. "29" августа 2014 г. Ос...»

«Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский университет Высшая школа экономики Факультет мировой экономики и мировой политики Кафедра торговой политикиВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА На тему "...»

«МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ Федеральное государственное бюджетное учреждение "Всероссийский...»








 
2017 www.li.i-docx.ru - «Бесплатная электронная библиотека - различные ресурсы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.